Spaces:
Running
Running
import torch.nn.functional as F | |
from torch import nn | |
class LPVLoss(nn.Module): | |
def __init__(self, label_smoothing=0.0, **kwargs): | |
super(LPVLoss, self).__init__() | |
self.label_smoothing = label_smoothing | |
def forward(self, preds, batch): | |
max_len = batch[2].max() | |
tgt = batch[1][:, 1:2 + max_len] | |
tgt = tgt.flatten(0, 1) | |
loss = 0 | |
loss_dict = {} | |
for i, pred in enumerate(preds): | |
pred = pred.flatten(0, 1) | |
loss_i = F.cross_entropy( | |
pred, | |
tgt, | |
reduction='mean', | |
label_smoothing=self.label_smoothing, | |
ignore_index=pred.shape[1] + 1, | |
) # self.loss_func(pred, tgt) | |
loss += loss_i | |
loss_dict['loss' + str(i)] = loss_i | |
loss_dict['loss'] = loss | |
return loss_dict | |