topdu's picture
openocr demo
29f689c
raw
history blame contribute delete
881 Bytes
import torch.nn.functional as F
from torch import nn
class LPVLoss(nn.Module):
def __init__(self, label_smoothing=0.0, **kwargs):
super(LPVLoss, self).__init__()
self.label_smoothing = label_smoothing
def forward(self, preds, batch):
max_len = batch[2].max()
tgt = batch[1][:, 1:2 + max_len]
tgt = tgt.flatten(0, 1)
loss = 0
loss_dict = {}
for i, pred in enumerate(preds):
pred = pred.flatten(0, 1)
loss_i = F.cross_entropy(
pred,
tgt,
reduction='mean',
label_smoothing=self.label_smoothing,
ignore_index=pred.shape[1] + 1,
) # self.loss_func(pred, tgt)
loss += loss_i
loss_dict['loss' + str(i)] = loss_i
loss_dict['loss'] = loss
return loss_dict