Spaces:
Running
Running
import torch.nn as nn | |
import torch.nn.functional as F | |
from openrec.modeling.common import Activation | |
class ConvBNLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
groups=1, | |
is_vd_mode=False, | |
act=None, | |
): | |
super(ConvBNLayer, self).__init__() | |
self.act = act | |
self.is_vd_mode = is_vd_mode | |
self._pool2d_avg = nn.AvgPool2d(kernel_size=stride, | |
stride=stride, | |
padding=0, | |
ceil_mode=False) | |
self._conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=1 if is_vd_mode else stride, | |
padding=(kernel_size - 1) // 2, | |
groups=groups, | |
bias=False, | |
) | |
self._batch_norm = nn.BatchNorm2d(out_channels, ) | |
if self.act is not None: | |
self._act = Activation(act_type=act, inplace=True) | |
def forward(self, inputs): | |
if self.is_vd_mode: | |
inputs = self._pool2d_avg(inputs) | |
y = self._conv(inputs) | |
y = self._batch_norm(y) | |
if self.act is not None: | |
y = self._act(y) | |
return y | |
class BottleneckBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
stride, | |
shortcut=True, | |
if_first=False, | |
name=None, | |
): | |
super(BottleneckBlock, self).__init__() | |
self.scale = 4 | |
self.conv0 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
act='relu', | |
) | |
self.conv1 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=stride, | |
act='relu', | |
) | |
self.conv2 = ConvBNLayer( | |
in_channels=out_channels, | |
out_channels=out_channels * self.scale, | |
kernel_size=1, | |
act=None, | |
) | |
if not shortcut: | |
self.short = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels * self.scale, | |
kernel_size=1, | |
stride=stride, | |
is_vd_mode=not if_first and stride[0] != 1, | |
) | |
self.shortcut = shortcut | |
self.out_channels = out_channels * self.scale | |
def forward(self, inputs): | |
y = self.conv0(inputs) | |
conv1 = self.conv1(y) | |
conv2 = self.conv2(conv1) | |
if self.shortcut: | |
short = inputs | |
else: | |
short = self.short(inputs) | |
y = short + conv2 | |
y = F.relu(y) | |
return y | |
class BasicBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
stride, | |
shortcut=True, | |
if_first=False, | |
name=None, | |
): | |
super(BasicBlock, self).__init__() | |
self.stride = stride | |
self.scale = 1 | |
self.conv0 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=stride, | |
act='relu', | |
) | |
self.conv1 = ConvBNLayer(in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
act=None) | |
if not shortcut: | |
self.short = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=stride, | |
is_vd_mode=not if_first and stride[0] != 1, | |
) | |
self.shortcut = shortcut | |
self.out_channels = out_channels * self.scale | |
def forward(self, inputs): | |
y = self.conv0(inputs) | |
conv1 = self.conv1(y) | |
if self.shortcut: | |
short = inputs | |
else: | |
short = self.short(inputs) | |
y = short + conv1 | |
y = F.relu(y) | |
return y | |
class ResNet(nn.Module): | |
def __init__(self, in_channels=3, layers=50, **kwargs): | |
super(ResNet, self).__init__() | |
self.layers = layers | |
supported_layers = [18, 34, 50, 101, 152, 200] | |
assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format( | |
supported_layers, layers) | |
if layers == 18: | |
depth = [2, 2, 2, 2] | |
elif layers == 34 or layers == 50: | |
depth = [3, 4, 6, 3] | |
elif layers == 101: | |
depth = [3, 4, 23, 3] | |
elif layers == 152: | |
depth = [3, 8, 36, 3] | |
elif layers == 200: | |
depth = [3, 12, 48, 3] | |
if layers >= 50: | |
block_class = BottleneckBlock | |
else: | |
block_class = BasicBlock | |
num_filters = [64, 128, 256, 512] | |
self.conv1_1 = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=32, | |
kernel_size=3, | |
stride=1, | |
act='relu', | |
) | |
self.conv1_2 = ConvBNLayer(in_channels=32, | |
out_channels=32, | |
kernel_size=3, | |
stride=1, | |
act='relu') | |
self.conv1_3 = ConvBNLayer(in_channels=32, | |
out_channels=64, | |
kernel_size=3, | |
stride=1, | |
act='relu') | |
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
# self.block_list = list() | |
self.block_list = nn.Sequential() | |
in_channels = 64 | |
for block in range(len(depth)): | |
shortcut = False | |
for i in range(depth[block]): | |
if layers in [101, 152, 200] and block == 2: | |
if i == 0: | |
conv_name = 'res' + str(block + 2) + 'a' | |
else: | |
conv_name = 'res' + str(block + 2) + 'b' + str(i) | |
else: | |
conv_name = 'res' + str(block + 2) + chr(97 + i) | |
if i == 0 and block != 0: | |
stride = (2, 1) | |
else: | |
stride = (1, 1) | |
block_instance = block_class( | |
in_channels=in_channels, | |
out_channels=num_filters[block], | |
stride=stride, | |
shortcut=shortcut, | |
if_first=block == i == 0, | |
name=conv_name, | |
) | |
shortcut = True | |
in_channels = block_instance.out_channels | |
# self.block_list.append(bottleneck_block) | |
self.block_list.add_module('bb_%d_%d' % (block, i), | |
block_instance) | |
self.out_channels = num_filters[block] | |
self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) | |
def forward(self, inputs): | |
y = self.conv1_1(inputs) | |
y = self.conv1_2(y) | |
y = self.conv1_3(y) | |
y = self.pool2d_max(y) | |
for block in self.block_list: | |
y = block(y) | |
y = self.out_pool(y) | |
return y | |