Spaces:
Running
Running
update app
Browse files- app.py +46 -21
- opendet/preprocess/db_resize_for_test.py +2 -0
- tools/infer_det.py +2 -0
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# -*- encoding: utf-8 -*-
|
2 |
# @Author: OpenOCR
|
3 |
# @Contact: 784990967@qq.com
|
4 |
import os
|
@@ -12,27 +11,43 @@ import time
|
|
12 |
from PIL import Image
|
13 |
from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# warm up 5 times
|
18 |
if True:
|
19 |
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
|
20 |
for i in range(5):
|
21 |
res = text_sys(img_numpy=img)
|
22 |
-
font_path = './simfang.ttf'
|
23 |
-
check_and_download_font(font_path)
|
24 |
|
|
|
|
|
25 |
|
26 |
def main(input_image,
|
27 |
-
|
|
|
|
|
28 |
mask_thresh=0.3,
|
29 |
box_thresh=0.6,
|
30 |
unclip_ratio=1.5,
|
31 |
det_score_mode='slow'):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
img = input_image[:, :, ::-1]
|
33 |
starttime = time.time()
|
34 |
results, time_dict, mask = text_sys(img_numpy=img,
|
35 |
return_mask=True,
|
|
|
36 |
thresh=mask_thresh,
|
37 |
box_thresh=box_thresh,
|
38 |
unclip_ratio=unclip_ratio,
|
@@ -54,7 +69,6 @@ def main(input_image,
|
|
54 |
mask = mask[0, 0, :, :] > mask_thresh
|
55 |
return save_pred, elapse, draw_img, mask.astype('uint8') * 255
|
56 |
|
57 |
-
|
58 |
def get_all_file_names_including_subdirs(dir_path):
|
59 |
all_file_names = []
|
60 |
|
@@ -65,11 +79,11 @@ def get_all_file_names_including_subdirs(dir_path):
|
|
65 |
file_names_only = [os.path.basename(file) for file in all_file_names]
|
66 |
return file_names_only
|
67 |
|
68 |
-
|
69 |
def list_image_paths(directory):
|
70 |
image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff')
|
71 |
|
72 |
image_paths = []
|
|
|
73 |
for root, dirs, files in os.walk(directory):
|
74 |
for file in files:
|
75 |
if file.lower().endswith(image_extensions):
|
@@ -80,14 +94,12 @@ def list_image_paths(directory):
|
|
80 |
image_paths = sorted(image_paths)
|
81 |
return image_paths
|
82 |
|
83 |
-
|
84 |
def find_file_in_current_dir_and_subdirs(file_name):
|
85 |
for root, dirs, files in os.walk('.'):
|
86 |
if file_name in files:
|
87 |
relative_path = os.path.join(root, file_name)
|
88 |
return relative_path
|
89 |
|
90 |
-
|
91 |
e2e_img_example = list_image_paths('./OCR_e2e_img')
|
92 |
|
93 |
if __name__ == '__main__':
|
@@ -96,7 +108,7 @@ if __name__ == '__main__':
|
|
96 |
with gr.Blocks(css=css) as demo:
|
97 |
gr.HTML("""
|
98 |
<h1 style='text-align: center;'><a href="https://github.com/Topdu/OpenOCR">OpenOCR</a></h1>
|
99 |
-
<p style='text-align: center;'>A general OCR system with accuracy and efficiency (created by <a href="https://github.com/Topdu/OpenOCR">OCR Team</a>, <a href="https://fvl.fudan.edu.cn">FVL Lab</a>)</p>""")
|
100 |
with gr.Row():
|
101 |
with gr.Column(scale=1):
|
102 |
input_image = gr.Image(label='Input image',
|
@@ -107,8 +119,20 @@ if __name__ == '__main__':
|
|
107 |
label='Examples')
|
108 |
downstream = gr.Button('Run')
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
rec_drop_score_slider = gr.Slider(
|
113 |
0.0,
|
114 |
1.0,
|
@@ -123,7 +147,7 @@ if __name__ == '__main__':
|
|
123 |
step=0.01,
|
124 |
label="Mask Threshold",
|
125 |
info="Mask threshold for binarizing masks, defaults to 0.3, turn it down if there is text truncation.")
|
126 |
-
with gr.
|
127 |
box_thresh_slider = gr.Slider(
|
128 |
0.0,
|
129 |
1.0,
|
@@ -139,12 +163,13 @@ if __name__ == '__main__':
|
|
139 |
label="Unclip Ratio",
|
140 |
info="Expansion factor for parsing text boxes, default value is 1.5. The larger the value, the larger the text box.")
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
148 |
|
149 |
with gr.Column(scale=1):
|
150 |
img_mask = gr.Image(label='mask',
|
@@ -159,7 +184,7 @@ if __name__ == '__main__':
|
|
159 |
|
160 |
downstream.click(fn=main,
|
161 |
inputs=[
|
162 |
-
input_image, rec_drop_score_slider,
|
163 |
mask_thresh_slider, box_thresh_slider,
|
164 |
unclip_ratio_slider, det_score_mode_dropdown
|
165 |
],
|
|
|
|
|
1 |
# @Author: OpenOCR
|
2 |
# @Contact: 784990967@qq.com
|
3 |
import os
|
|
|
11 |
from PIL import Image
|
12 |
from tools.infer_e2e import OpenOCR, check_and_download_font, draw_ocr_box_txt
|
13 |
|
14 |
+
def initialize_ocr(model_type, drop_score):
|
15 |
+
return OpenOCR(mode=model_type, drop_score=drop_score)
|
16 |
+
|
17 |
+
# Default model type
|
18 |
+
model_type = 'mobile'
|
19 |
+
drop_score = 0.4
|
20 |
+
text_sys = initialize_ocr(model_type, drop_score)
|
21 |
+
|
22 |
# warm up 5 times
|
23 |
if True:
|
24 |
img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
|
25 |
for i in range(5):
|
26 |
res = text_sys(img_numpy=img)
|
|
|
|
|
27 |
|
28 |
+
font_path = './simfang.ttf'
|
29 |
+
font_path = check_and_download_font(font_path)
|
30 |
|
31 |
def main(input_image,
|
32 |
+
model_type_select,
|
33 |
+
det_input_size_textbox=960,
|
34 |
+
rec_drop_score=0.4,
|
35 |
mask_thresh=0.3,
|
36 |
box_thresh=0.6,
|
37 |
unclip_ratio=1.5,
|
38 |
det_score_mode='slow'):
|
39 |
+
global text_sys, model_type
|
40 |
+
|
41 |
+
# Update OCR model if the model type changes
|
42 |
+
if model_type_select != model_type:
|
43 |
+
model_type = model_type_select
|
44 |
+
text_sys = initialize_ocr(model_type, rec_drop_score)
|
45 |
+
|
46 |
img = input_image[:, :, ::-1]
|
47 |
starttime = time.time()
|
48 |
results, time_dict, mask = text_sys(img_numpy=img,
|
49 |
return_mask=True,
|
50 |
+
det_input_size=int(det_input_size_textbox),
|
51 |
thresh=mask_thresh,
|
52 |
box_thresh=box_thresh,
|
53 |
unclip_ratio=unclip_ratio,
|
|
|
69 |
mask = mask[0, 0, :, :] > mask_thresh
|
70 |
return save_pred, elapse, draw_img, mask.astype('uint8') * 255
|
71 |
|
|
|
72 |
def get_all_file_names_including_subdirs(dir_path):
|
73 |
all_file_names = []
|
74 |
|
|
|
79 |
file_names_only = [os.path.basename(file) for file in all_file_names]
|
80 |
return file_names_only
|
81 |
|
|
|
82 |
def list_image_paths(directory):
|
83 |
image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.tiff')
|
84 |
|
85 |
image_paths = []
|
86 |
+
|
87 |
for root, dirs, files in os.walk(directory):
|
88 |
for file in files:
|
89 |
if file.lower().endswith(image_extensions):
|
|
|
94 |
image_paths = sorted(image_paths)
|
95 |
return image_paths
|
96 |
|
|
|
97 |
def find_file_in_current_dir_and_subdirs(file_name):
|
98 |
for root, dirs, files in os.walk('.'):
|
99 |
if file_name in files:
|
100 |
relative_path = os.path.join(root, file_name)
|
101 |
return relative_path
|
102 |
|
|
|
103 |
e2e_img_example = list_image_paths('./OCR_e2e_img')
|
104 |
|
105 |
if __name__ == '__main__':
|
|
|
108 |
with gr.Blocks(css=css) as demo:
|
109 |
gr.HTML("""
|
110 |
<h1 style='text-align: center;'><a href="https://github.com/Topdu/OpenOCR">OpenOCR</a></h1>
|
111 |
+
<p style='text-align: center;'>A general OCR system with accuracy and efficiency (created by <a href="https://github.com/Topdu/OpenOCR">OCR Team</a>, <a href="https://fvl.fudan.edu.cn">FVL Lab</a>) <a href="https://github.com/Topdu/OpenOCR/tree/main?tab=readme-ov-file#quick-start">[Local Deployment]</a></p>""")
|
112 |
with gr.Row():
|
113 |
with gr.Column(scale=1):
|
114 |
input_image = gr.Image(label='Input image',
|
|
|
119 |
label='Examples')
|
120 |
downstream = gr.Button('Run')
|
121 |
|
122 |
+
# 添加参数调节组件
|
123 |
+
with gr.Column():
|
124 |
+
with gr.Row():
|
125 |
+
det_input_size_textbox = gr.Number(
|
126 |
+
label='Detection Input Size',
|
127 |
+
value=960,
|
128 |
+
info='The longest side of the detection network input size, defaults to 960.')
|
129 |
+
det_score_mode_dropdown = gr.Dropdown(
|
130 |
+
["slow", "fast"],
|
131 |
+
value="slow",
|
132 |
+
label="Det Score Mode",
|
133 |
+
info="The confidence calculation mode of the text box, the default is slow. Slow mode is slower but more accurate. Fast mode is faster but less accurate."
|
134 |
+
)
|
135 |
+
with gr.Row():
|
136 |
rec_drop_score_slider = gr.Slider(
|
137 |
0.0,
|
138 |
1.0,
|
|
|
147 |
step=0.01,
|
148 |
label="Mask Threshold",
|
149 |
info="Mask threshold for binarizing masks, defaults to 0.3, turn it down if there is text truncation.")
|
150 |
+
with gr.Row():
|
151 |
box_thresh_slider = gr.Slider(
|
152 |
0.0,
|
153 |
1.0,
|
|
|
163 |
label="Unclip Ratio",
|
164 |
info="Expansion factor for parsing text boxes, default value is 1.5. The larger the value, the larger the text box.")
|
165 |
|
166 |
+
# 模型选择组件
|
167 |
+
model_type_dropdown = gr.Dropdown(
|
168 |
+
['mobile', 'server'],
|
169 |
+
value='mobile',
|
170 |
+
label='Model Type',
|
171 |
+
info='Select the type of OCR model: high efficiency model mobile, high accuracy model server.'
|
172 |
+
)
|
173 |
|
174 |
with gr.Column(scale=1):
|
175 |
img_mask = gr.Image(label='mask',
|
|
|
184 |
|
185 |
downstream.click(fn=main,
|
186 |
inputs=[
|
187 |
+
input_image, model_type_dropdown, det_input_size_textbox, rec_drop_score_slider,
|
188 |
mask_thresh_slider, box_thresh_slider,
|
189 |
unclip_ratio_slider, det_score_mode_dropdown
|
190 |
],
|
opendet/preprocess/db_resize_for_test.py
CHANGED
@@ -27,6 +27,8 @@ class DetResizeForTest(object):
|
|
27 |
|
28 |
def __call__(self, data):
|
29 |
img = data['image']
|
|
|
|
|
30 |
src_h, src_w, _ = img.shape
|
31 |
if sum([src_h, src_w]) < 64:
|
32 |
img = self.image_padding(img)
|
|
|
27 |
|
28 |
def __call__(self, data):
|
29 |
img = data['image']
|
30 |
+
if 'max_sile_len' in data:
|
31 |
+
self.limit_side_len = data['max_sile_len']
|
32 |
src_h, src_w, _ = img.shape
|
33 |
if sum([src_h, src_w]) < 64:
|
34 |
img = self.image_padding(img)
|
tools/infer_det.py
CHANGED
@@ -392,6 +392,8 @@ class OpenDetector(object):
|
|
392 |
img = f.read()
|
393 |
data = {'image': img}
|
394 |
data = self.transform(data, self.ops[:1])
|
|
|
|
|
395 |
batch = self.transform(data, self.ops[1:])
|
396 |
|
397 |
images = np.expand_dims(batch[0], axis=0)
|
|
|
392 |
img = f.read()
|
393 |
data = {'image': img}
|
394 |
data = self.transform(data, self.ops[:1])
|
395 |
+
if kwargs.get('det_input_size', None) is not None:
|
396 |
+
data['max_sile_len'] = kwargs['det_input_size']
|
397 |
batch = self.transform(data, self.ops[1:])
|
398 |
|
399 |
images = np.expand_dims(batch[0], axis=0)
|