import torch.nn as nn import torch.nn.functional as F from openrec.modeling.common import Activation class ConvBNLayer(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, groups=1, is_vd_mode=False, act=None, ): super(ConvBNLayer, self).__init__() self.act = act self.is_vd_mode = is_vd_mode self._pool2d_avg = nn.AvgPool2d(kernel_size=stride, stride=stride, padding=0, ceil_mode=False) self._conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=1 if is_vd_mode else stride, padding=(kernel_size - 1) // 2, groups=groups, bias=False, ) self._batch_norm = nn.BatchNorm2d(out_channels, ) if self.act is not None: self._act = Activation(act_type=act, inplace=True) def forward(self, inputs): if self.is_vd_mode: inputs = self._pool2d_avg(inputs) y = self._conv(inputs) y = self._batch_norm(y) if self.act is not None: y = self._act(y) return y class BottleneckBlock(nn.Module): def __init__( self, in_channels, out_channels, stride, shortcut=True, if_first=False, name=None, ): super(BottleneckBlock, self).__init__() self.scale = 4 self.conv0 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, act='relu', ) self.conv1 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu', ) self.conv2 = ConvBNLayer( in_channels=out_channels, out_channels=out_channels * self.scale, kernel_size=1, act=None, ) if not shortcut: self.short = ConvBNLayer( in_channels=in_channels, out_channels=out_channels * self.scale, kernel_size=1, stride=stride, is_vd_mode=not if_first and stride[0] != 1, ) self.shortcut = shortcut self.out_channels = out_channels * self.scale def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) conv2 = self.conv2(conv1) if self.shortcut: short = inputs else: short = self.short(inputs) y = short + conv2 y = F.relu(y) return y class BasicBlock(nn.Module): def __init__( self, in_channels, out_channels, stride, shortcut=True, if_first=False, name=None, ): super(BasicBlock, self).__init__() self.stride = stride self.scale = 1 self.conv0 = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=stride, act='relu', ) self.conv1 = ConvBNLayer(in_channels=out_channels, out_channels=out_channels, kernel_size=3, act=None) if not shortcut: self.short = ConvBNLayer( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, is_vd_mode=not if_first and stride[0] != 1, ) self.shortcut = shortcut self.out_channels = out_channels * self.scale def forward(self, inputs): y = self.conv0(inputs) conv1 = self.conv1(y) if self.shortcut: short = inputs else: short = self.short(inputs) y = short + conv1 y = F.relu(y) return y class ResNet(nn.Module): def __init__(self, in_channels=3, layers=50, **kwargs): super(ResNet, self).__init__() self.layers = layers supported_layers = [18, 34, 50, 101, 152, 200] assert layers in supported_layers, 'supported layers are {} but input layer is {}'.format( supported_layers, layers) if layers == 18: depth = [2, 2, 2, 2] elif layers == 34 or layers == 50: depth = [3, 4, 6, 3] elif layers == 101: depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] elif layers == 200: depth = [3, 12, 48, 3] if layers >= 50: block_class = BottleneckBlock else: block_class = BasicBlock num_filters = [64, 128, 256, 512] self.conv1_1 = ConvBNLayer( in_channels=in_channels, out_channels=32, kernel_size=3, stride=1, act='relu', ) self.conv1_2 = ConvBNLayer(in_channels=32, out_channels=32, kernel_size=3, stride=1, act='relu') self.conv1_3 = ConvBNLayer(in_channels=32, out_channels=64, kernel_size=3, stride=1, act='relu') self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # self.block_list = list() self.block_list = nn.Sequential() in_channels = 64 for block in range(len(depth)): shortcut = False for i in range(depth[block]): if layers in [101, 152, 200] and block == 2: if i == 0: conv_name = 'res' + str(block + 2) + 'a' else: conv_name = 'res' + str(block + 2) + 'b' + str(i) else: conv_name = 'res' + str(block + 2) + chr(97 + i) if i == 0 and block != 0: stride = (2, 1) else: stride = (1, 1) block_instance = block_class( in_channels=in_channels, out_channels=num_filters[block], stride=stride, shortcut=shortcut, if_first=block == i == 0, name=conv_name, ) shortcut = True in_channels = block_instance.out_channels # self.block_list.append(bottleneck_block) self.block_list.add_module('bb_%d_%d' % (block, i), block_instance) self.out_channels = num_filters[block] self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) def forward(self, inputs): y = self.conv1_1(inputs) y = self.conv1_2(y) y = self.conv1_3(y) y = self.pool2d_max(y) for block in self.block_list: y = block(y) y = self.out_pool(y) return y