File size: 12,008 Bytes
098aed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fd430b
098aed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/env python

import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# Debugging: Start script
print("Starting script...")

HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN is None:
    print("Warning: HF_TOKEN is not set!")

PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword")  # Set your desired password here or via environment variable

DESCRIPTION = "# FT of Lama"

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
    print("Warning: No GPU available. This model cannot run on CPU.")
else:
    print("GPU is available!")

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# Debugging: GPU check passed, loading model
if torch.cuda.is_available():
    model_id = "BGLAW/bggpt-Instruct-bglawinsv1UNS_merged"
    try:
        print("Loading model...")
        model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
        print("Model loaded successfully!")
        
        print("Loading tokenizer...")
        tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
        print("Tokenizer loaded successfully!")
    except Exception as e:
        print(f"Error loading model or tokenizer: {e}")
        raise e  # Re-raise the error after logging it


@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    print(f"Received message: {message}")
    print(f"Chat history: {chat_history}")

    conversation = []
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    try:
        print("Tokenizing input...")
        input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
        print(f"Input tokenized: {input_ids.shape}")
        
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
            print("Trimmed input tokens due to length.")
        
        input_ids = input_ids.to(model.device)
        print("Input moved to the model's device.")
        
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            {"input_ids": input_ids},
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            num_beams=1,
            repetition_penalty=repetition_penalty,
        )
        
        print("Starting generation...")
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()
        print("Thread started for model generation.")
        
        outputs = []
        for text in streamer:
            outputs.append(text)
            print(f"Generated text so far: {''.join(outputs)}")
            yield "".join(outputs)
    
    except Exception as e:
        print(f"Error during generation: {e}")
        raise e  # Re-raise the error after logging it


def password_auth(password):
    if password == PASSWORD:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.")

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

# Debugging: Interface setup
print("Setting up interface...")

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    
    # Create login components
    with gr.Row(visible=True) as login_area:
        password_input = gr.Textbox(
            label="Enter Password", type="password", placeholder="Password", show_label=True
        )
        login_btn = gr.Button("Submit")
        incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False)
    
    # Main chat interface
    with gr.Column(visible=False) as chat_area:
        gr.Markdown(DESCRIPTION)
        gr.DuplicateButton(
            value="Duplicate Space for private use",
            elem_id="duplicate-button",
            visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
        )
        chat_interface.render()
    
    # Bind login button to check password
    login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg])

# Debugging: Starting queue and launching the demo
print("Launching demo...")

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)



# WORKING
# #!/usr/bin/env python

# import os
# from threading import Thread
# from typing import Iterator

# import gradio as gr
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# # Debugging: Start script
# print("Starting script...")

# HF_TOKEN = os.environ.get("HF_TOKEN")
# if HF_TOKEN is None:
#     print("Warning: HF_TOKEN is not set!")

# DESCRIPTION = "# Mistral-7B v0.2"

# if not torch.cuda.is_available():
#     DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
#     print("Warning: No GPU available. This model cannot run on CPU.")
# else:
#     print("GPU is available!")

# MAX_MAX_NEW_TOKENS = 2048
# DEFAULT_MAX_NEW_TOKENS = 1024
# MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# # Debugging: GPU check passed, loading model
# if torch.cuda.is_available():
#     model_id = "mistralai/Mistral-7B-Instruct-v0.2"
#     try:
#         print("Loading model...")
#         model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
#         print("Model loaded successfully!")
        
#         print("Loading tokenizer...")
#         tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
#         print("Tokenizer loaded successfully!")
#     except Exception as e:
#         print(f"Error loading model or tokenizer: {e}")
#         raise e  # Re-raise the error after logging it


# @spaces.GPU
# def generate(
#     message: str,
#     chat_history: list[tuple[str, str]],
#     max_new_tokens: int = 1024,
#     temperature: float = 0.6,
#     top_p: float = 0.9,
#     top_k: int = 50,
#     repetition_penalty: float = 1.2,
# ) -> Iterator[str]:
#     print(f"Received message: {message}")
#     print(f"Chat history: {chat_history}")

#     conversation = []
#     for user, assistant in chat_history:
#         conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
#     conversation.append({"role": "user", "content": message})

#     try:
#         print("Tokenizing input...")
#         input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
#         print(f"Input tokenized: {input_ids.shape}")
        
#         if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
#             input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
#             gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
#             print("Trimmed input tokens due to length.")
        
#         input_ids = input_ids.to(model.device)
#         print("Input moved to the model's device.")
        
#         streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
#         generate_kwargs = dict(
#             {"input_ids": input_ids},
#             streamer=streamer,
#             max_new_tokens=max_new_tokens,
#             do_sample=True,
#             top_p=top_p,
#             top_k=top_k,
#             temperature=temperature,
#             num_beams=1,
#             repetition_penalty=repetition_penalty,
#         )
        
#         print("Starting generation...")
#         t = Thread(target=model.generate, kwargs=generate_kwargs)
#         t.start()
#         print("Thread started for model generation.")
        
#         outputs = []
#         for text in streamer:
#             outputs.append(text)
#             print(f"Generated text so far: {''.join(outputs)}")
#             yield "".join(outputs)
    
#     except Exception as e:
#         print(f"Error during generation: {e}")
#         raise e  # Re-raise the error after logging it


# chat_interface = gr.ChatInterface(
#     fn=generate,
#     additional_inputs=[
#         gr.Slider(
#             label="Max new tokens",
#             minimum=1,
#             maximum=MAX_MAX_NEW_TOKENS,
#             step=1,
#             value=DEFAULT_MAX_NEW_TOKENS,
#         ),
#         gr.Slider(
#             label="Temperature",
#             minimum=0.1,
#             maximum=4.0,
#             step=0.1,
#             value=0.6,
#         ),
#         gr.Slider(
#             label="Top-p (nucleus sampling)",
#             minimum=0.05,
#             maximum=1.0,
#             step=0.05,
#             value=0.9,
#         ),
#         gr.Slider(
#             label="Top-k",
#             minimum=1,
#             maximum=1000,
#             step=1,
#             value=50,
#         ),
#         gr.Slider(
#             label="Repetition penalty",
#             minimum=1.0,
#             maximum=2.0,
#             step=0.05,
#             value=1.2,
#         ),
#     ],
#     stop_btn=None,
#     examples=[
#         ["Hello there! How are you doing?"],
#         ["Can you explain briefly to me what is the Python programming language?"],
#         ["Explain the plot of Cinderella in a sentence."],
#         ["How many hours does it take a man to eat a Helicopter?"],
#         ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
#     ],
# )

# # Debugging: Interface setup
# print("Setting up interface...")

# with gr.Blocks(css="style.css") as demo:
#     gr.Markdown(DESCRIPTION)
#     gr.DuplicateButton(
#         value="Duplicate Space for private use",
#         elem_id="duplicate-button",
#         visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
#     )
#     chat_interface.render()

# # Debugging: Starting queue and launching the demo
# print("Launching demo...")

# if __name__ == "__main__":
#     demo.queue(max_size=20).launch(share=True)