File size: 12,008 Bytes
098aed9 2fd430b 098aed9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Debugging: Start script
print("Starting script...")
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN is None:
print("Warning: HF_TOKEN is not set!")
PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword") # Set your desired password here or via environment variable
DESCRIPTION = "# FT of Lama"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
print("Warning: No GPU available. This model cannot run on CPU.")
else:
print("GPU is available!")
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# Debugging: GPU check passed, loading model
if torch.cuda.is_available():
model_id = "BGLAW/bggpt-Instruct-bglawinsv1UNS_merged"
try:
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
print("Model loaded successfully!")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
print("Tokenizer loaded successfully!")
except Exception as e:
print(f"Error loading model or tokenizer: {e}")
raise e # Re-raise the error after logging it
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
print(f"Received message: {message}")
print(f"Chat history: {chat_history}")
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
try:
print("Tokenizing input...")
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
print(f"Input tokenized: {input_ids.shape}")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
print("Trimmed input tokens due to length.")
input_ids = input_ids.to(model.device)
print("Input moved to the model's device.")
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
print("Starting generation...")
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
print("Thread started for model generation.")
outputs = []
for text in streamer:
outputs.append(text)
print(f"Generated text so far: {''.join(outputs)}")
yield "".join(outputs)
except Exception as e:
print(f"Error during generation: {e}")
raise e # Re-raise the error after logging it
def password_auth(password):
if password == PASSWORD:
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.")
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
# Debugging: Interface setup
print("Setting up interface...")
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
# Create login components
with gr.Row(visible=True) as login_area:
password_input = gr.Textbox(
label="Enter Password", type="password", placeholder="Password", show_label=True
)
login_btn = gr.Button("Submit")
incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False)
# Main chat interface
with gr.Column(visible=False) as chat_area:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
chat_interface.render()
# Bind login button to check password
login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg])
# Debugging: Starting queue and launching the demo
print("Launching demo...")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)
# WORKING
# #!/usr/bin/env python
# import os
# from threading import Thread
# from typing import Iterator
# import gradio as gr
# import spaces
# import torch
# from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# # Debugging: Start script
# print("Starting script...")
# HF_TOKEN = os.environ.get("HF_TOKEN")
# if HF_TOKEN is None:
# print("Warning: HF_TOKEN is not set!")
# DESCRIPTION = "# Mistral-7B v0.2"
# if not torch.cuda.is_available():
# DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
# print("Warning: No GPU available. This model cannot run on CPU.")
# else:
# print("GPU is available!")
# MAX_MAX_NEW_TOKENS = 2048
# DEFAULT_MAX_NEW_TOKENS = 1024
# MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# # Debugging: GPU check passed, loading model
# if torch.cuda.is_available():
# model_id = "mistralai/Mistral-7B-Instruct-v0.2"
# try:
# print("Loading model...")
# model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN)
# print("Model loaded successfully!")
# print("Loading tokenizer...")
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
# print("Tokenizer loaded successfully!")
# except Exception as e:
# print(f"Error loading model or tokenizer: {e}")
# raise e # Re-raise the error after logging it
# @spaces.GPU
# def generate(
# message: str,
# chat_history: list[tuple[str, str]],
# max_new_tokens: int = 1024,
# temperature: float = 0.6,
# top_p: float = 0.9,
# top_k: int = 50,
# repetition_penalty: float = 1.2,
# ) -> Iterator[str]:
# print(f"Received message: {message}")
# print(f"Chat history: {chat_history}")
# conversation = []
# for user, assistant in chat_history:
# conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
# conversation.append({"role": "user", "content": message})
# try:
# print("Tokenizing input...")
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
# print(f"Input tokenized: {input_ids.shape}")
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
# print("Trimmed input tokens due to length.")
# input_ids = input_ids.to(model.device)
# print("Input moved to the model's device.")
# streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
# generate_kwargs = dict(
# {"input_ids": input_ids},
# streamer=streamer,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# top_p=top_p,
# top_k=top_k,
# temperature=temperature,
# num_beams=1,
# repetition_penalty=repetition_penalty,
# )
# print("Starting generation...")
# t = Thread(target=model.generate, kwargs=generate_kwargs)
# t.start()
# print("Thread started for model generation.")
# outputs = []
# for text in streamer:
# outputs.append(text)
# print(f"Generated text so far: {''.join(outputs)}")
# yield "".join(outputs)
# except Exception as e:
# print(f"Error during generation: {e}")
# raise e # Re-raise the error after logging it
# chat_interface = gr.ChatInterface(
# fn=generate,
# additional_inputs=[
# gr.Slider(
# label="Max new tokens",
# minimum=1,
# maximum=MAX_MAX_NEW_TOKENS,
# step=1,
# value=DEFAULT_MAX_NEW_TOKENS,
# ),
# gr.Slider(
# label="Temperature",
# minimum=0.1,
# maximum=4.0,
# step=0.1,
# value=0.6,
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# minimum=0.05,
# maximum=1.0,
# step=0.05,
# value=0.9,
# ),
# gr.Slider(
# label="Top-k",
# minimum=1,
# maximum=1000,
# step=1,
# value=50,
# ),
# gr.Slider(
# label="Repetition penalty",
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# value=1.2,
# ),
# ],
# stop_btn=None,
# examples=[
# ["Hello there! How are you doing?"],
# ["Can you explain briefly to me what is the Python programming language?"],
# ["Explain the plot of Cinderella in a sentence."],
# ["How many hours does it take a man to eat a Helicopter?"],
# ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
# ],
# )
# # Debugging: Interface setup
# print("Setting up interface...")
# with gr.Blocks(css="style.css") as demo:
# gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(
# value="Duplicate Space for private use",
# elem_id="duplicate-button",
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
# )
# chat_interface.render()
# # Debugging: Starting queue and launching the demo
# print("Launching demo...")
# if __name__ == "__main__":
# demo.queue(max_size=20).launch(share=True)
|