#!/usr/bin/env python import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Debugging: Start script print("Starting script...") HF_TOKEN = os.environ.get("HF_TOKEN") if HF_TOKEN is None: print("Warning: HF_TOKEN is not set!") PASSWORD = os.getenv("APP_PASSWORD", "mysecretpassword") # Set your desired password here or via environment variable DESCRIPTION = "# FT of Lama" if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" print("Warning: No GPU available. This model cannot run on CPU.") else: print("GPU is available!") MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # Debugging: GPU check passed, loading model if torch.cuda.is_available(): model_id = "BGLAW/bggpt-Instruct-bglawinsv1UNS_merged" try: print("Loading model...") model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) print("Model loaded successfully!") print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) print("Tokenizer loaded successfully!") except Exception as e: print(f"Error loading model or tokenizer: {e}") raise e # Re-raise the error after logging it @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: print(f"Received message: {message}") print(f"Chat history: {chat_history}") conversation = [] for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) try: print("Tokenizing input...") input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") print(f"Input tokenized: {input_ids.shape}") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") print("Trimmed input tokens due to length.") input_ids = input_ids.to(model.device) print("Input moved to the model's device.") streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) print("Starting generation...") t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() print("Thread started for model generation.") outputs = [] for text in streamer: outputs.append(text) print(f"Generated text so far: {''.join(outputs)}") yield "".join(outputs) except Exception as e: print(f"Error during generation: {e}") raise e # Re-raise the error after logging it def password_auth(password): if password == PASSWORD: return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True, value="Incorrect password. Try again.") chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], ) # Debugging: Interface setup print("Setting up interface...") with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) # Create login components with gr.Row(visible=True) as login_area: password_input = gr.Textbox( label="Enter Password", type="password", placeholder="Password", show_label=True ) login_btn = gr.Button("Submit") incorrect_password_msg = gr.Markdown("Incorrect password. Try again.", visible=False) # Main chat interface with gr.Column(visible=False) as chat_area: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) chat_interface.render() # Bind login button to check password login_btn.click(password_auth, inputs=password_input, outputs=[chat_area, incorrect_password_msg]) # Debugging: Starting queue and launching the demo print("Launching demo...") if __name__ == "__main__": demo.queue(max_size=20).launch(share=True) # WORKING # #!/usr/bin/env python # import os # from threading import Thread # from typing import Iterator # import gradio as gr # import spaces # import torch # from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # # Debugging: Start script # print("Starting script...") # HF_TOKEN = os.environ.get("HF_TOKEN") # if HF_TOKEN is None: # print("Warning: HF_TOKEN is not set!") # DESCRIPTION = "# Mistral-7B v0.2" # if not torch.cuda.is_available(): # DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" # print("Warning: No GPU available. This model cannot run on CPU.") # else: # print("GPU is available!") # MAX_MAX_NEW_TOKENS = 2048 # DEFAULT_MAX_NEW_TOKENS = 1024 # MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # # Debugging: GPU check passed, loading model # if torch.cuda.is_available(): # model_id = "mistralai/Mistral-7B-Instruct-v0.2" # try: # print("Loading model...") # model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) # print("Model loaded successfully!") # print("Loading tokenizer...") # tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) # print("Tokenizer loaded successfully!") # except Exception as e: # print(f"Error loading model or tokenizer: {e}") # raise e # Re-raise the error after logging it # @spaces.GPU # def generate( # message: str, # chat_history: list[tuple[str, str]], # max_new_tokens: int = 1024, # temperature: float = 0.6, # top_p: float = 0.9, # top_k: int = 50, # repetition_penalty: float = 1.2, # ) -> Iterator[str]: # print(f"Received message: {message}") # print(f"Chat history: {chat_history}") # conversation = [] # for user, assistant in chat_history: # conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) # conversation.append({"role": "user", "content": message}) # try: # print("Tokenizing input...") # input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") # print(f"Input tokenized: {input_ids.shape}") # if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: # input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] # gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") # print("Trimmed input tokens due to length.") # input_ids = input_ids.to(model.device) # print("Input moved to the model's device.") # streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) # generate_kwargs = dict( # {"input_ids": input_ids}, # streamer=streamer, # max_new_tokens=max_new_tokens, # do_sample=True, # top_p=top_p, # top_k=top_k, # temperature=temperature, # num_beams=1, # repetition_penalty=repetition_penalty, # ) # print("Starting generation...") # t = Thread(target=model.generate, kwargs=generate_kwargs) # t.start() # print("Thread started for model generation.") # outputs = [] # for text in streamer: # outputs.append(text) # print(f"Generated text so far: {''.join(outputs)}") # yield "".join(outputs) # except Exception as e: # print(f"Error during generation: {e}") # raise e # Re-raise the error after logging it # chat_interface = gr.ChatInterface( # fn=generate, # additional_inputs=[ # gr.Slider( # label="Max new tokens", # minimum=1, # maximum=MAX_MAX_NEW_TOKENS, # step=1, # value=DEFAULT_MAX_NEW_TOKENS, # ), # gr.Slider( # label="Temperature", # minimum=0.1, # maximum=4.0, # step=0.1, # value=0.6, # ), # gr.Slider( # label="Top-p (nucleus sampling)", # minimum=0.05, # maximum=1.0, # step=0.05, # value=0.9, # ), # gr.Slider( # label="Top-k", # minimum=1, # maximum=1000, # step=1, # value=50, # ), # gr.Slider( # label="Repetition penalty", # minimum=1.0, # maximum=2.0, # step=0.05, # value=1.2, # ), # ], # stop_btn=None, # examples=[ # ["Hello there! How are you doing?"], # ["Can you explain briefly to me what is the Python programming language?"], # ["Explain the plot of Cinderella in a sentence."], # ["How many hours does it take a man to eat a Helicopter?"], # ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], # ], # ) # # Debugging: Interface setup # print("Setting up interface...") # with gr.Blocks(css="style.css") as demo: # gr.Markdown(DESCRIPTION) # gr.DuplicateButton( # value="Duplicate Space for private use", # elem_id="duplicate-button", # visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", # ) # chat_interface.render() # # Debugging: Starting queue and launching the demo # print("Launching demo...") # if __name__ == "__main__": # demo.queue(max_size=20).launch(share=True)