tori29umai's picture
Update
c1c88a4
import gradio as gr
import csv
import os
from pathlib import Path
import cv2
import numpy as np
from PIL import Image
import onnxruntime as ort
from huggingface_hub import hf_hub_download
import spaces
# 画像のサイズ設定
IMAGE_SIZE = 448
def preprocess_image(image):
image = np.array(image)
image = image[:, :, ::-1] # BGRからRGBへ変換
# 画像を正方形にするためのパディングを追加
size = max(image.shape[0:2])
pad_x = size - image.shape[1]
pad_y = size - image.shape[0]
pad_l = pad_x // 2
pad_t = pad_y // 2
image = np.pad(image, ((pad_t, pad_y - pad_t), (pad_l, pad_x - pad_l), (0, 0)), mode="constant", constant_values=255)
# サイズに合わせた補間方法を選択
interp = cv2.INTER_AREA if size > IMAGE_SIZE else cv2.INTER_LANCZOS4
image = cv2.resize(image, (IMAGE_SIZE, IMAGE_SIZE), interpolation=interp)
image = image.astype(np.float32)
return image
@spaces.GPU
def main(image_path, model_id):
print("Hugging Faceからモデルをダウンロード中")
onnx_path = hf_hub_download(model_id, "model.onnx")
csv_path = hf_hub_download(model_id, "selected_tags.csv")
# ONNXモデルとCSVファイルの読み込み
image = Image.open(image_path)
image = image.convert("RGB") if image.mode != "RGB" else image
image = preprocess_image(image)
img = np.array([image])
ort_sess = ort.InferenceSession(onnx_path) # セッションの生成をここで行う
prob = ort_sess.run(None, {ort_sess.get_inputs()[0].name: img})[0][0]
with open(csv_path, "r", encoding="utf-8") as f:
reader = csv.reader(f)
next(reader) # ヘッダーをスキップ
rows = list(reader)
rating_tags = [row[1] for row in rows if row[2] == "9"]
character_tags = [row[1] for row in rows if row[2] == "4"]
general_tags = [row[1] for row in rows if row[2] == "0"]
# タグと評価
NSFW_flag, IP_flag, tag_text = evaluate_tags(prob, rating_tags, character_tags, general_tags)
return NSFW_flag, IP_flag, tag_text
def evaluate_tags(prob, rating_tags, character_tags, general_tags):
thresh = 0.35
# NSFW/SFW判定
tag_confidences = {tag: prob[i] for i, tag in enumerate(rating_tags)}
max_nsfw_score = max(tag_confidences.get("questionable", 0), tag_confidences.get("explicit", 0))
max_sfw_score = tag_confidences.get("general", 0)
NSFW_flag = "NSFWの可能性が高いです" if max_nsfw_score > max_sfw_score else "SFWの可能性が高いです"
# 版権キャラクターの可能性を評価
character_tags_with_probs = []
for i, p in enumerate(prob[4:]):
if p >= thresh and i >= len(general_tags):
tag_index = i - len(general_tags)
if tag_index < len(character_tags):
tag_name = character_tags[tag_index]
prob_percent = round(p * 100, 2) # 確率をパーセンテージに変換
character_tags_with_probs.append((tag_name, f"{prob_percent}%"))
IP_flag = f"版権キャラクター: {character_tags_with_probs}の可能性があります" if character_tags_with_probs else "版権キャラクターの可能性が低いと思われます"
# タグを生成
general_tag_text = ", ".join([general_tags[i] for i in range(len(general_tags)) if prob[i] >= thresh])
character_tag_text = ", ".join([character_tags[i - len(general_tags)] for i in range(len(general_tags), len(prob)) if prob[i] >= thresh])
tag_text = f"{general_tag_text}, {character_tag_text}" if character_tag_text else general_tag_text
return NSFW_flag, IP_flag, tag_text
class webui:
def __init__(self):
self.demo = gr.Blocks()
def launch(self):
with self.demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', label="Analysis Image")
model_id = gr.Textbox(label="Model ID", value="SmilingWolf/wd-vit-tagger-v3")
output_0 = gr.Textbox(label="NSFW Flag")
output_1 = gr.Textbox(label="IP Flag")
output_2 = gr.Textbox(label="Tags")
submit = gr.Button(value="Start Analysis")
submit.click(
main,
inputs=[input_image, model_id],
outputs=[output_0, output_1, output_2]
)
self.demo.launch(share=True) # 公開リンクを設定
if __name__ == "__main__":
ui = webui()
ui.launch()