File size: 8,318 Bytes
3ea2029
ee14fdf
 
 
 
 
 
4d0b176
3ea2029
6e9b1b6
 
 
ec4bc2b
 
6e9b1b6
ec4bc2b
 
ee14fdf
 
 
 
3ea2029
6e9b1b6
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4bc2b
6e9b1b6
 
 
ec4bc2b
ebcb006
 
ec4bc2b
 
 
ebcb006
9c33ed5
ec4bc2b
 
 
 
 
 
 
 
ebcb006
ec4bc2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cb3b05
 
4d0b176
9509e00
 
ebcb006
ec4bc2b
 
 
 
 
 
 
 
 
 
 
9509e00
ec4bc2b
4d0b176
 
 
 
 
 
 
 
 
6e9b1b6
245de5e
 
 
2e1c1e0
6dfe6c8
4d0b176
 
 
 
6e9b1b6
4d0b176
21e05f5
deca380
 
21e05f5
4d0b176
 
21e05f5
4d0b176
7775d86
21e05f5
 
4d0b176
 
 
 
 
 
21e05f5
4d0b176
 
 
 
 
 
 
c43315f
4d0b176
6e9b1b6
 
 
 
 
a578853
 
6e9b1b6
a578853
 
4d0b176
ac47311
 
4d0b176
cb13df9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import cv2
import numpy as np
import os
from collections import defaultdict
from skimage.color import deltaE_ciede2000, rgb2lab
import zipfile

def DoG_filter(image, kernel_size=0, sigma=1.0, k_sigma=2.0, gamma=1.5):
    g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
    g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
    return g1 - gamma * g2

def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
    epsilon /= 255
    dog = DoG_filter(image, kernel_size, sigma, k_sigma, gamma)
    dog /= dog.max()
    e = 1 + np.tanh(phi * (dog - epsilon))
    e[e >= 1] = 1
    return (e * 255).astype('uint8')

def binarize_image(image):
    _, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    return binarized


def process_XDoG(image_path):
    kernel_size=0
    sigma=1.4
    k_sigma=1.6
    epsilon=0
    phi=10
    gamma=0.98

    image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
    xdog_image = XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma)
    binarized_image = binarize_image(xdog_image)
    final_image = Image.fromarray(binarized_image)
    return final_image



def replace_color(image, color_1, blur_radius=2):
    data = np.array(image)
    original_shape = data.shape
    channels = original_shape[2] if len(original_shape) > 2 else 1  # チャンネル数を璺θͺ
    data = data.reshape(-1, channels)
    color_1 = np.array(color_1)
    matches = np.all(data[:, :3] == color_1, axis=1)
    nochange_count = 0
    mask = np.zeros(data.shape[0], dtype=bool)

    while np.any(matches):
        new_matches = np.zeros_like(matches)
        match_num = np.sum(matches)
        for i in range(len(data)):  # Removed tqdm
            if matches[i]:
                x, y = divmod(i, original_shape[1])
                neighbors = [
                    (x, y-1), (x, y+1), (x-1, y), (x+1, y)
                ]
                valid_neighbors = []
                for nx, ny in neighbors:
                    if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
                        ni = nx * original_shape[1] + ny
                        if not np.all(data[ni, :3] == color_1, axis=0):
                            valid_neighbors.append(data[ni, :3])
                if valid_neighbors:
                    new_color = np.mean(valid_neighbors, axis=0).astype(np.uint8)
                    data[i, :3] = new_color
                    data[i, 3] = 255
                    mask[i] = True
                else:
                    new_matches[i] = True
        matches = new_matches
        if match_num == np.sum(matches):
            nochange_count += 1
        if nochange_count > 5:
            break

    data = data.reshape(original_shape)
    mask = mask.reshape(original_shape[:2])

    result_image = Image.fromarray(data, 'RGBA')
    blurred_image = result_image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
    blurred_data = np.array(blurred_image)

    np.copyto(data, blurred_data, where=mask[..., None])

    return Image.fromarray(data, 'RGBA')

def generate_distant_colors(consolidated_colors, distance_threshold):
    consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
    max_attempts = 10000
    for _ in range(max_attempts):
        random_rgb = np.random.randint(0, 256, size=3)
        random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
        if all(deltaE_ciede2000(base_color_lab, random_lab) > distance_threshold for base_color_lab in consolidated_lab):
            return tuple(random_rgb)
    return (128, 128, 128)

def consolidate_colors(major_colors, threshold):
    colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
    i = 0
    while i < len(colors_lab):
        j = i + 1
        while j < len(colors_lab):
            if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
                if major_colors[i][1] >= major_colors[j][1]:
                    major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
                    major_colors.pop(j)
                    colors_lab.pop(j)
                else:
                    major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
                    major_colors.pop(i)
                    colors_lab.pop(i)
                continue
            j += 1
        i += 1
    return major_colors

def get_major_colors(image, threshold_percentage=0.01):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    color_count = defaultdict(int)
    for pixel in image.getdata():
        color_count[pixel] += 1
    total_pixels = image.width * image.height
    major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
    return major_colors

def line_color(image, mask, new_color):
    data = np.array(image)
    data[mask, :3] = new_color
    return Image.fromarray(data)

def process_image(image, lineart):
    if image.mode != 'RGBA':
        image = image.convert('RGBA')

    lineart = lineart.point(lambda x: 0 if x < 200 else 255)
    lineart = ImageOps.invert(lineart)
    kernel = np.ones((3, 3), np.uint8)
    lineart = cv2.dilate(np.array(lineart), kernel, iterations=1)
    lineart = Image.fromarray(lineart)
    mask = np.array(lineart) == 255
    major_colors = get_major_colors(image, threshold_percentage=0.05)
    major_colors = consolidate_colors(major_colors, 10)
    new_color_1 = generate_distant_colors(major_colors, 100)
    filled_image = line_color(image, mask, new_color_1)
    replace_color_image = replace_color(filled_image, new_color_1, 2).convert('RGB')
    return replace_color_image

def zip_files(zip_files, zip_path):
    with zipfile.ZipFile(zip_path, 'w') as zipf:
        for file_path in zip_files:
            zipf.write(file_path, arcname=os.path.basename(file_path))

class webui:
    def __init__(self):
        self.demo = gr.Blocks()

    def main(self, image_path):
        image = Image.open(image_path)
        if image.mode != 'RGBA':
            image = image.convert('RGBA')    
        #ζ‹‘εΌ΅ε­γ‚’ε–γ‚Šι™€γ„γŸγƒ•γ‚‘γ‚€γƒ«εγ‚’ε–εΎ—
        image_name = os.path.splitext(image_path)[0]
        alpha = image.getchannel('A') if image.mode == 'RGBA' else None
        image.save(image_path)
        image = Image.open(image_path).convert('RGBA')
        rgb_image = image.convert('RGB')
        lineart = process_XDoG(image_path).convert('L')
        replace_color_image = process_image(rgb_image, lineart).convert('RGBA')
        
        if alpha:
            replace_color_image.putalpha(alpha)
        
        replace_color_image_path = f"{image_name}_noline.png"
        replace_color_image.save(replace_color_image_path)
        
        lineart_image = lineart.convert('RGBA')
        lineart_alpha = 255 - np.array(lineart) 
        lineart_image.putalpha(Image.fromarray(lineart_alpha))
        
        lineart_image_path = f"{image_name}_lineart.png"
        lineart_image.save(lineart_image_path)

        zip_files_list = [replace_color_image_path, lineart_image_path]
        zip_path = f"{image_name}.zip"
        zip_files(zip_files_list, zip_path)
        
        outputs = [replace_color_image, lineart_image]
        return outputs, zip_path

    def launch(self, share):
        with self.demo:
            with gr.Row():
                with gr.Column():
                    input_image = gr.Image(type='filepath', image_mode="RGBA", label="Original Image")
                    submit = gr.Button(value="Start")
                with gr.Row():
                    with gr.Column():
                        with gr.Tab("output"):
                            output_0 = gr.Gallery(format="png")
                        output_file = gr.File()
            submit.click(
                self.main, 
                inputs=[input_image], 
                outputs=[output_0, output_file]
            )

        self.demo.queue()
        self.demo.launch(share=share)

if __name__ == "__main__":
    ui = webui()
    ui.launch(share=True)