File size: 6,397 Bytes
3ea2029
ee14fdf
 
 
 
 
 
3ea2029
ec4bc2b
ee14fdf
 
ec4bc2b
 
 
 
 
ee14fdf
 
 
 
3ea2029
ee14fdf
 
 
 
ec4bc2b
ee14fdf
ec4bc2b
 
 
 
 
 
 
ee14fdf
ec4bc2b
ee14fdf
ec4bc2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee14fdf
 
 
 
 
ec4bc2b
ee14fdf
ec4bc2b
 
ee14fdf
 
 
 
3c53cb7
 
ee14fdf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import cv2
import numpy as np
import os
from collections import defaultdict
from skimage.color import deltaE_ciede2000, rgb2lab

def DoG_filter(image, kernel_size=0, sigma=1.0, k_sigma=2.0, gamma=1.5):
    g1 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
    g2 = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma * k_sigma)
    return g1 - gamma * g2

def XDoG_filter(image, kernel_size=0, sigma=1.4, k_sigma=1.6, epsilon=0, phi=10, gamma=0.98):
    epsilon /= 255
    dog = DoG_filter(image, kernel_size, sigma, k_sigma, gamma)
    dog /= dog.max()
    e = 1 + np.tanh(phi * (dog - epsilon))
    e[e >= 1] = 1
    return (e * 255).astype('uint8')

def binarize_image(image):
    _, binarized = cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    return binarized


def process_XDoG(image_path):
    kernel_size=0
    sigma=1.4
    k_sigma=1.6
    epsilon=0
    phi=10
    gamma=0.98

    image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
    xdog_image = XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma)
    binarized_image = binarize_image(xdog_image)
    final_image = Image.fromarray(binarized_image)
    return final_image



def replace_color(image, color_1, blur_radius=2):
    data = np.array(image)
    original_shape = data.shape
    data = data.reshape(-1, 4)
    color_1 = np.array(color_1)
    matches = np.all(data[:, :3] == color_1, axis=1)
    nochange_count = 0
    mask = np.zeros(data.shape[0], dtype=bool)

    while np.any(matches):
        new_matches = np.zeros_like(matches)
        match_num = np.sum(matches)
        for i in tqdm(range(len(data))):
            if matches[i]:
                x, y = divmod(i, original_shape[1])
                neighbors = [
                    (x, y-1), (x, y+1), (x-1, y), (x+1, y)
                ]
                valid_neighbors = []
                for nx, ny in neighbors:
                    if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
                        ni = nx * original_shape[1] + ny
                        if not np.all(data[ni, :3] == color_1, axis=0):
                            valid_neighbors.append(data[ni, :3])
                if valid_neighbors:
                    new_color = np.mean(valid_neighbors, axis=0).astype(np.uint8)
                    data[i, :3] = new_color
                    data[i, 3] = 255
                    mask[i] = True
                else:
                    new_matches[i] = True
        matches = new_matches
        if match_num == np.sum(matches):
            nochange_count += 1
        if nochange_count > 5:
            break

    data = data.reshape(original_shape)
    mask = mask.reshape(original_shape[:2])

    result_image = Image.fromarray(data, 'RGBA')
    blurred_image = result_image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
    blurred_data = np.array(blurred_image)

    np.copyto(data, blurred_data, where=mask[..., None])

    return Image.fromarray(data, 'RGBA')

def generate_distant_colors(consolidated_colors, distance_threshold):
    consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
    max_attempts = 10000
    for _ in range(max_attempts):
        random_rgb = np.random.randint(0, 256, size=3)
        random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
        if all(deltaE_ciede2000(base_color_lab, random_lab) > distance_threshold for base_color_lab in consolidated_lab):
            return tuple(random_rgb)
    return (128, 128, 128)

def consolidate_colors(major_colors, threshold):
    colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
    i = 0
    while i < len(colors_lab):
        j = i + 1
        while j < len(colors_lab):
            if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
                if major_colors[i][1] >= major_colors[j][1]:
                    major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
                    major_colors.pop(j)
                    colors_lab.pop(j)
                else:
                    major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
                    major_colors.pop(i)
                    colors_lab.pop(i)
                continue
            j += 1
        i += 1
    return major_colors

def get_major_colors(image, threshold_percentage=0.01):
    if image.mode != 'RGB':
        image = image.convert('RGB')
    color_count = defaultdict(int)
    for pixel in image.getdata():
        color_count[pixel] += 1
    total_pixels = image.width * image.height
    major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
    return major_colors

def line_color(image, mask, new_color):
    data = np.array(image)
    data[mask, :3] = new_color
    return Image.fromarray(data, 'RGBA')


def main(image, lineart):
    lineart = lineart.point(lambda x: 0 if x < 200 else 255)
    lineart = ImageOps.invert(lineart)
    kernel = np.ones((3, 3), np.uint8)
    lineart = cv2.dilate(np.array(lineart), kernel, iterations=1)
    lineart = Image.fromarray(lineart)
    mask = np.array(lineart) == 255
    major_colors = get_major_colors(image, threshold_percentage=0.05)
    major_colors = consolidate_colors(major_colors, 10)
    new_color_1 = generate_distant_colors(major_colors, 100)
    filled_image = line_color(image, mask, new_color_1)
    replace_color_image = replace_color(filled_image, new_color_1, 2).convert('RGB')
    return replace_color_image 


# Gradioインターフェース用のメイン関数
def gradio_interface(image):
    image_path = 'temp_input_image.jpg'
    image.save(image_path)
    image = Image.open(image_path).convert('RGBA')
    lineart = process_XDoG(image_path).convert('L')
    replace_color_image = main(image, lineart)
    return replace_color_image

# Gradioアプリを設定し、起動する
iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Image(type='pil', label="Original Image"),
    outputs=gr.Image(type='pil', label="Processed Image"),
    title="Line Art Removal",
    description="画像をアップロードして線画を除去します。"
)

iface.launch()