LineArt-Removar / app.py
tori29umai's picture
Update
c43315f
raw
history blame
9.9 kB
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import cv2
import numpy as np
import os
from collections import defaultdict
from skimage.color import deltaE_ciede2000, rgb2lab
import zipfile
def DoG_filter(image, kernel_size, sigma, k_sigma, gamma):
if kernel_size == 0:
kernel_size = None # OpenCVにカーネルサイズを自動で決定させる
else:
kernel_size = (kernel_size, kernel_size)
g1 = cv2.GaussianBlur(image, kernel_size, sigma)
g2 = cv2.GaussianBlur(image, kernel_size, sigma * k_sigma)
return g1 - gamma * g2
def XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma):
epsilon /= 255
dog = DoG_filter(image, kernel_size, sigma, k_sigma, gamma)
dog /= dog.max()
e = 1 + np.tanh(phi * (dog - epsilon))
e[e >= 1] = 1
return (e * 255).astype('uint8')
def process_XDoG(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma):
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
xdog_image = XDoG_filter(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma)
return Image.fromarray(xdog_image).convert('L')
def replace_color(image, color_1, blur_radius=2):
data = np.array(image)
original_shape = data.shape
channels = original_shape[2] if len(original_shape) > 2 else 1 # チャンネル数を確認
data = data.reshape(-1, channels)
color_1 = np.array(color_1)
matches = np.all(data[:, :3] == color_1, axis=1)
nochange_count = 0
mask = np.zeros(data.shape[0], dtype=bool)
while np.any(matches):
new_matches = np.zeros_like(matches)
match_num = np.sum(matches)
for i in range(len(data)): # Removed tqdm
if matches[i]:
x, y = divmod(i, original_shape[1])
neighbors = [
(x, y-1), (x, y+1), (x-1, y), (x+1, y)
]
valid_neighbors = []
for nx, ny in neighbors:
if 0 <= nx < original_shape[0] and 0 <= ny < original_shape[1]:
ni = nx * original_shape[1] + ny
if not np.all(data[ni, :3] == color_1, axis=0):
valid_neighbors.append(data[ni, :3])
if valid_neighbors:
new_color = np.mean(valid_neighbors, axis=0).astype(np.uint8)
data[i, :3] = new_color
data[i, 3] = 255
mask[i] = True
else:
new_matches[i] = True
matches = new_matches
if match_num == np.sum(matches):
nochange_count += 1
if nochange_count > 5:
break
data = data.reshape(original_shape)
mask = mask.reshape(original_shape[:2])
result_image = Image.fromarray(data, 'RGBA')
blurred_image = result_image.filter(ImageFilter.GaussianBlur(radius=blur_radius))
blurred_data = np.array(blurred_image)
np.copyto(data, blurred_data, where=mask[..., None])
return Image.fromarray(data, 'RGBA')
def generate_distant_colors(consolidated_colors, distance_threshold):
consolidated_lab = [rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3) for color, _ in consolidated_colors]
max_attempts = 10000
for _ in range(max_attempts):
random_rgb = np.random.randint(0, 256, size=3)
random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(3)
if all(deltaE_ciede2000(base_color_lab, random_lab) > distance_threshold for base_color_lab in consolidated_lab):
return tuple(random_rgb)
return (128, 128, 128)
def consolidate_colors(major_colors, threshold):
colors_lab = [rgb2lab(np.array([[color]], dtype=np.float32)/255.0).reshape(3) for color, _ in major_colors]
i = 0
while i < len(colors_lab):
j = i + 1
while j < len(colors_lab):
if deltaE_ciede2000(colors_lab[i], colors_lab[j]) < threshold:
if major_colors[i][1] >= major_colors[j][1]:
major_colors[i] = (major_colors[i][0], major_colors[i][1] + major_colors[j][1])
major_colors.pop(j)
colors_lab.pop(j)
else:
major_colors[j] = (major_colors[j][0], major_colors[j][1] + major_colors[i][1])
major_colors.pop(i)
colors_lab.pop(i)
continue
j += 1
i += 1
return major_colors
def get_major_colors(image, threshold_percentage=0.01):
if image.mode != 'RGB':
image = image.convert('RGB')
color_count = defaultdict(int)
for pixel in image.getdata():
color_count[pixel] += 1
total_pixels = image.width * image.height
major_colors = [(color, count) for color, count in color_count.items() if (count / total_pixels) >= threshold_percentage]
return major_colors
def line_color(image, mask, new_color):
data = np.array(image)
data[mask, :3] = new_color
return Image.fromarray(data)
def process_image(image, lineart):
if image.mode != 'RGBA':
image = image.convert('RGBA')
lineart = lineart.point(lambda x: 0 if x < 200 else 255)
lineart = ImageOps.invert(lineart)
kernel = np.ones((3, 3), np.uint8)
lineart = cv2.dilate(np.array(lineart), kernel, iterations=1)
lineart = Image.fromarray(lineart)
mask = np.array(lineart) == 255
major_colors = get_major_colors(image, threshold_percentage=0.05)
major_colors = consolidate_colors(major_colors, 10)
new_color_1 = generate_distant_colors(major_colors, 100)
filled_image = line_color(image, mask, new_color_1)
replace_color_image = replace_color(filled_image, new_color_1, 2).convert('RGB')
return replace_color_image
def zip_files(zip_files, zip_path):
with zipfile.ZipFile(zip_path, 'w') as zipf:
for file_path in zip_files:
zipf.write(file_path, arcname=os.path.basename(file_path))
class webui:
def __init__(self):
self.demo = gr.Blocks()
def main(self, image_path, kernel_size, sigma, k_sigma, epsilon, phi, gamma):
kernel_size = int(kernel_size)
sigma = float(sigma)
k_sigma = float(k_sigma)
epsilon = int(epsilon)
phi = int(phi)
gamma = float(gamma)
image = Image.open(image_path).convert('RGBA')
#拡張子を取り除いたファイル名を取得
image_name = os.path.splitext(image_path)[0]
alpha = image.getchannel('A') if image.mode == 'RGBA' else None
image.save(image_path)
image = Image.open(image_path).convert('RGBA')
rgb_image = image.convert('RGB')
lineart = process_XDoG(image, kernel_size, sigma, k_sigma, epsilon, phi, gamma).convert('L')
replace_color_image = process_image(rgb_image, lineart).convert('RGBA')
if alpha:
replace_color_image.putalpha(alpha)
replace_color_image_path = f"{image_name}_noline.png"
replace_color_image.save(replace_color_image_path)
lineart_image = lineart.convert('RGBA')
lineart_alpha = 255 - np.array(lineart)
lineart_image.putalpha(Image.fromarray(lineart_alpha))
lineart_image_path = f"{image_name}_lineart.png"
lineart_image.save(lineart_image_path)
zip_files_list = [replace_color_image_path, lineart_image_path]
zip_path = f"{image_name}.zip"
zip_files(zip_files_list, zip_path)
outputs = [replace_color_image, lineart_image]
return outputs, zip_path
def launch(self, share):
with self.demo:
with gr.Row():
with gr.Column():
input_image = gr.Image(type='filepath', image_mode="RGBA", label="Original Image")
kernel_size = gr.Dropdown(choices=[0, 1, 3, 5, 7, 9], value=0, label="カーネルサイズ (kernel_size)")
kernel_size_description = gr.Label("ガウシアンフィルタのカーネルサイズです。線の鋭さを設定します。0を選択するとOpenCVが自動でカーネルサイズを決定します。")
sigma = gr.Slider(0.1, 10.0, step=0.1, value=1.4, label="シグマ (sigma)")
sigma_description = gr.Label("ガウシアンフィルタの標準偏差。ぼかしの程度を制御します。")
k_sigma = gr.Slider(1.0, 3.0, step=0.1, value=1.6, label="k_シグマ (k_sigma)")
k_sigma_description = gr.Label("二つ目のガウシアンフィルタのシグマの倍率。線の太さが影響を受けます。")
epsilon = gr.Slider(-10, 10, value=0, label="イプシロン (epsilon)")
epsilon_description = gr.Label("XDoGフィルターの閾値パラメータ。線画の明瞭度やコントラストを調整します。")
phi = gr.Slider(1, 100, value=10, label="ファイ (phi)")
phi_description = gr.Label("タンジェントハイパーボリック関数の係数。閾値を超えた部分の鮮明さを高めます。")
gamma = gr.Slider(0.5, 1.5, step=0.1, value=0.98, label="ガンマ (gamma)")
gamma_description = gr.Label("DoGフィルタの強度調整パラメータ。主に線の明るさや暗さを調節します。")
submit = gr.Button(value="Start")
with gr.Column():
output_image = gr.Image(label="Processed Image")
submit.click(
self.main,
inputs=[input_image, kernel_size, sigma, k_sigma, epsilon, phi, gamma],
outputs=[output_image]
)
self.demo.launch(share=share)
if __name__ == "__main__":
ui = webui()
ui.launch(share=True)