File size: 4,835 Bytes
3542be4
 
 
63bfd3a
3542be4
 
 
 
31877a7
168fc85
00c86c6
0c23f7f
27419c1
3542be4
402fe71
 
 
 
 
 
 
 
e09cb69
 
31877a7
 
402fe71
2bd18a2
953a099
c7df0ab
e09cb69
51838d1
953a099
c7df0ab
953a099
967d328
322677e
953a099
 
b3b6580
2421eec
402fe71
168fc85
6904b31
967d328
 
402fe71
 
6904b31
c6a6db8
0c23f7f
 
 
3515ae5
402fe71
 
967d328
3451ce1
402fe71
 
 
d472855
402fe71
d472855
402fe71
 
 
168fc85
402fe71
 
a50b44f
 
402fe71
6dbbd62
06642da
25db6c9
 
4948a0e
6dbbd62
 
776de3e
 
fab4c46
2919701
fab4c46
 
 
27419c1
2421eec
402fe71
2b32e3d
 
 
 
 
 
 
 
 
 
63bfd3a
 
 
 
538326f
63bfd3a
2b32e3d
63bfd3a
2b32e3d
f091221
 
6dbbd62
f091221
 
 
2b32e3d
2098e9c
2421eec
2b32e3d
 
402fe71
 
 
edcfd06
402fe71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import spaces
import gradio as gr
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL
from PIL import Image
import os
import time

from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
from utils.image_utils import resize_image_aspect_ratio, base_generation

from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
from utils.tagger import modelLoad, analysis

path = os.getcwd()
cn_dir = f"{path}/controlnet"
tagger_dir = f"{path}/tagger"
lora_dir = f"{path}/lora"
os.makedirs(cn_dir, exist_ok=True)
os.makedirs(tagger_dir, exist_ok=True)
os.makedirs(lora_dir, exist_ok=True)

dl_cn_model(cn_dir)
dl_cn_config(cn_dir)
dl_tagger_model(tagger_dir)
dl_lora_model(lora_dir)

def load_model(lora_dir, cn_dir):
    dtype = torch.float16
    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
    controlnet = ControlNetModel.from_pretrained(cn_dir, torch_dtype=dtype, use_safetensors=True)

    pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
        "cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
    )
    pipe.enable_model_cpu_offload()
    pipe.load_lora_weights(lora_dir, weight_name="syoujomannga_line.safetensors")
    return pipe

@spaces.GPU(duration=120)
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
    pipe = load_model(lora_dir, cn_dir) 
    input_image = Image.open(input_image_path)
    base_image = base_generation(input_image.size, (255, 255, 255, 255)).convert("RGB")
    resize_image = resize_image_aspect_ratio(input_image)
    resize_base_image = resize_image_aspect_ratio(base_image)
    generator = torch.manual_seed(0)
    last_time = time.time()
    prompt = "masterpiece, best quality, monochrome, greyscale, lineart, white background, " + prompt
    execute_tags = ["realistic", "nose", "asian"]
    prompt = execute_prompt(execute_tags, prompt)
    prompt = remove_duplicates(prompt)        
    prompt = remove_color(prompt)
    print(prompt)

    output_image = pipe(
        image=resize_base_image,
        control_image=resize_image,
        strength=1.0,
        prompt=prompt,
        negative_prompt = negative_prompt,
        controlnet_conditioning_scale=float(controlnet_scale),
        generator=generator,
        num_inference_steps=30,
        eta=1.0,
    ).images[0]
    print(f"Time taken: {time.time() - last_time}")
    output_image = output_image.resize(input_image.size, Image.LANCZOS)
    return output_image

class Img2Img:
    def __init__(self):
        self.demo = self.layout()
        self.tagger_model = None
        self.input_image_path = None
        self.canny_image = None


    def process_prompt_analysis(self, input_image_path):
        if self.tagger_model is None:
            self.tagger_model = modelLoad(tagger_dir)
        tags = analysis(input_image_path, tagger_dir, self.tagger_model)
        prompt = remove_color(tags)
        execute_tags = ["realistic", "nose", "asian"]
        prompt = execute_prompt(execute_tags, prompt)
        prompt = remove_duplicates(prompt)               
        return prompt


    def layout(self):
        css = """
        #intro{
            max-width: 32rem;
            text-align: center;
            margin: 0 auto;
        }
        """
        with gr.Blocks(css=css) as demo:
            with gr.Row():
                with gr.Column():
                    self.input_image_path = gr.Image(label="Input image", type='filepath')
                    self.prompt = gr.Textbox(label="Prompt", lines=3)
                    self.negative_prompt = gr.Textbox(label="Negative prompt", lines=3, value="sketch, lowres, error, extra digit, fewer digits, cropped, worst quality,low quality, normal quality, jpeg artifacts, blurry")
                    prompt_analysis_button = gr.Button("Prompt analysis")
                    self.controlnet_scale = gr.Slider(minimum=0.4, maximum=1.0, value=0.55, step=0.01, label="Photp fidelity")                 
                    generate_button = gr.Button(value="Generate", variant="primary")
                with gr.Column():
                    self.output_image = gr.Image(type="pil", label="Output image")

            prompt_analysis_button.click(
                        self.process_prompt_analysis,
                        inputs=[self.input_image_path],
                        outputs=self.prompt
            )

            generate_button.click(
                fn=predict,
                inputs=[self.input_image_path, self.prompt, self.negative_prompt, self.controlnet_scale],
                outputs=self.output_image
            )
        return demo

img2img = Img2Img()
img2img.demo.queue()
img2img.demo.launch(share=True)