llava-jp-1.3b-v1.1 / llava /model /clip_encoder.py
toshi456's picture
Upload 14 files
7d0ed79 verified
raw
history blame
4.8 kB
from typing import Optional
import torch
import torch.nn as nn
from transformers import (
CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig,\
SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig
)
from llava.s2wrapper import forward as multiscale_forward
class CLIPVisionTower(nn.Module):
def __init__(
self,
vision_tower_name: str="openai/clip-vit-large-patch14-336",
mm_vision_select_layer: int=-2, # v1.5 is -2
mm_vision_select_feature: str="patch",
delay_load: bool=False,
requires_grad: bool=False,
scales: Optional[float] = None
):
super().__init__()
self.is_loaded = False
self.requires_grad = requires_grad
self.scales = scales
self.vision_tower_name = vision_tower_name
self.select_layer = mm_vision_select_layer
self.select_feature = mm_vision_select_feature
self.image_processor = None
self.vision_tower = None
if not delay_load:
self.load_model()
else:
if "clip" in self.vision_tower_name:
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
elif "siglip" in self.vision_tower_name:
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name)
else:
raise ValueError(f'Unsupported vision_tower_name: {self.vision_tower_name}')
def load_model(self):
if "clip" in self.vision_tower_name:
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
elif "siglip" in self.vision_tower_name:
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
else:
raise ValueError(f'Unsupported vision_tower_name: {self.vision_tower_name}')
self.vision_tower.requires_grad_(self.requires_grad)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer]
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
@torch.no_grad()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
if self.scales is None:
image_feature = self._forward_feature(images.unsqueeze(0))
else:
image_feature = multiscale_forward(
self._forward_feature,
images.unsqueeze(0),
scales=self.scales,
num_prefix_token=0,
max_split_size=self.image_processor.size["height"]
)
#image_feature = self.feature_select(image_forward_out).to(image.dtype)
image_features.append(image_feature)
else:
if self.scales is None:
image_features = self._forward_feature(images)
else:
image_features = multiscale_forward(
self._forward_feature,
images,
scales=self.scales,
num_prefix_token=0,
max_split_size=self.image_processor.size["height"]
)
#image_features = self.feature_select(image_forward_outs).to(images.dtype)
return image_features
def _forward_feature(self, inputs):
return self.feature_select(self.vision_tower(inputs.to(device=self.device, dtype=self.dtype), output_hidden_states=True))
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
if self.scales is None:
return self.config.hidden_size
return self.config.hidden_size*len(self.scales)
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2