Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------------------------ | |
# Copyright (c) 2024 Baifeng Shi. | |
# All rights reserved. | |
# | |
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. | |
# ------------------------------------------------------------------------------------------ | |
import torch | |
def split_chessboard(x, num_split): | |
""" | |
x: b * c * h * w | |
Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension | |
""" | |
B, C, H, W = x.shape | |
assert H % num_split == 0 and W % num_split == 0 | |
h, w = H // num_split, W // num_split | |
x_split = torch.cat([x[:, :, i*h:(i+1)*h, j*w:(j+1)*w] for i in range(num_split) for j in range(num_split)], dim=0) | |
return x_split | |
def merge_chessboard(x, num_split): | |
""" | |
x: b * c * h * w | |
Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square. | |
(inverse of split_chessboard) | |
""" | |
B, C, H, W = x.shape | |
assert B % (num_split**2) == 0 | |
b = B // (num_split**2) | |
x_merge = torch.cat([torch.cat([x[(i*num_split + j)*b:(i*num_split + j + 1)*b] for j in range(num_split)], dim=-1) | |
for i in range(num_split)], dim=-2) | |
return x_merge |