llava-jp-1.3b-v1.1 / llava /train /arguments_dataclass.py
toshi456's picture
Upload 14 files
7d0ed79 verified
raw
history blame
3.67 kB
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Optional
import transformers
@dataclass
class ModelArguments:
base_model: Optional[str] = field(default="gpt2",
metadata={"help": "gpt2 or gpt_neox or llama"})
model_name_or_path: Optional[str] = field(default="rinna/japanese-gpt2-xsmall")
version: Optional[str] = field(default="plain")
freeze_backbone: bool = field(default=False) # LLMをFreezeするか
tune_mm_mlp_adapter: bool = field(default=False) # 事前学習のときはmm_mlp_adapterだけ保存する.
vision_tower: Optional[str] = field(default="openai/clip-vit-large-patch14-336")
mm_vision_select_layer: Optional[int] = field(default=-2) # default to the last two layer
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) # fine-tuningのときには設定
mm_projector_type: Optional[str] = field(default='mlp2x_gelu') # 2層の線形層
mm_vision_select_feature: Optional[str] = field(default="patch")
scales: Optional[list[float]] = field(default=None)
@dataclass
class DataArguments:
data_path: str = field(default="",
metadata={"help": "Path to the training data."})
lazy_preprocess: bool = False
is_multimodal: bool = False
image_folder: Optional[str] = field(default="/home/toshi/work/llava_jp/input/LLaVA-CC3M-Pretrain-595K/images",
metadata={"help": "Path to image data."})
image_aspect_ratio: str = 'square'
image_size: Optional[int] = None
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=1024,
metadata={
"help":
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=16,
metadata={"help": "How many bits to use."}
)
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
mm_projector_lr: Optional[float] = None
group_by_modality_length: bool = field(default=False) # dataset sampler option
fp16: bool = field(default=False)
bf16: bool = field(default=False)
output_dir: str = field(default="./output_llava/checkpoints/llava-v1.5-japanese-gpt2-xsmall")
num_train_epochs: int = field(default=1)
per_device_train_batch_size: int = field(default=32)
per_device_eval_batch_size: int = field(default=4)
gradient_accumulation_steps: int = field(default=1)
evaluation_strategy: str = field(default="no")
save_strategy: str = field(default="steps")
save_steps: int = field(default=24000)
save_total_limit: int = field(default=1)
learning_rate: float = field(default=1e-3)
weight_decay: float = field(default=0.)
warmup_ratio: float = field(default=0.03)
logging_steps: int = field(default=1)
model_max_length: int = field(default=1024)
gradient_checkpointing: bool = field(default=True)
dataloader_num_workers: int = field(default=16)
lr_scheduler_type: str = field(default="cosine")
seed: int = field(default=42)