Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitattributes +5 -0
- app.py +182 -0
- imgs/sample1.jpg +3 -0
- imgs/sample2.jpg +3 -0
- imgs/sample3.jpg +3 -0
- imgs/sample4.jpg +3 -0
- imgs/sample5.jpg +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
imgs/sample1.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
imgs/sample2.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
imgs/sample3.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
imgs/sample4.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
imgs/sample5.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
|
5 |
+
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
6 |
+
from llava.conversation import conv_templates
|
7 |
+
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
|
8 |
+
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
|
9 |
+
from llava.train.dataset import tokenizer_image_token
|
10 |
+
|
11 |
+
|
12 |
+
# load model
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
|
15 |
+
model_path = 'toshi456/llava-jp-1.3b-v1.1'
|
16 |
+
|
17 |
+
model = LlavaGpt2ForCausalLM.from_pretrained(
|
18 |
+
model_path,
|
19 |
+
low_cpu_mem_usage=True,
|
20 |
+
use_safetensors=True,
|
21 |
+
torch_dtype=torch_dtype,
|
22 |
+
device_map=device,
|
23 |
+
)
|
24 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
25 |
+
model_path,
|
26 |
+
model_max_length=1024,
|
27 |
+
padding_side="right",
|
28 |
+
use_fast=False,
|
29 |
+
)
|
30 |
+
model.eval()
|
31 |
+
conv_mode = "v1"
|
32 |
+
|
33 |
+
|
34 |
+
@torch.inference_mode()
|
35 |
+
def inference_fn(
|
36 |
+
image,
|
37 |
+
prompt,
|
38 |
+
max_len,
|
39 |
+
temperature,
|
40 |
+
top_p,
|
41 |
+
):
|
42 |
+
# prepare inputs
|
43 |
+
# image pre-process
|
44 |
+
image_size = model.get_model().vision_tower.image_processor.size["height"]
|
45 |
+
if model.get_model().vision_tower.scales is not None:
|
46 |
+
image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales)
|
47 |
+
|
48 |
+
if device == "cuda":
|
49 |
+
image_tensor = model.get_model().vision_tower.image_processor(
|
50 |
+
image,
|
51 |
+
return_tensors='pt',
|
52 |
+
size={"height": image_size, "width": image_size}
|
53 |
+
)['pixel_values'].half().cuda().to(torch_dtype)
|
54 |
+
else:
|
55 |
+
image_tensor = model.get_model().vision_tower.image_processor(
|
56 |
+
image,
|
57 |
+
return_tensors='pt',
|
58 |
+
size={"height": image_size, "width": image_size}
|
59 |
+
)['pixel_values'].to(torch_dtype)
|
60 |
+
|
61 |
+
# create prompt
|
62 |
+
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
63 |
+
conv = conv_templates[conv_mode].copy()
|
64 |
+
conv.append_message(conv.roles[0], inp)
|
65 |
+
conv.append_message(conv.roles[1], None)
|
66 |
+
prompt = conv.get_prompt()
|
67 |
+
|
68 |
+
input_ids = tokenizer_image_token(
|
69 |
+
prompt,
|
70 |
+
tokenizer,
|
71 |
+
IMAGE_TOKEN_INDEX,
|
72 |
+
return_tensors='pt'
|
73 |
+
).unsqueeze(0)
|
74 |
+
if device == "cuda":
|
75 |
+
input_ids = input_ids.to(device)
|
76 |
+
|
77 |
+
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
|
78 |
+
|
79 |
+
# generate
|
80 |
+
output_ids = model.generate(
|
81 |
+
inputs=input_ids,
|
82 |
+
images=image_tensor,
|
83 |
+
do_sample= temperature != 0.0,
|
84 |
+
temperature=temperature,
|
85 |
+
top_p=top_p,
|
86 |
+
max_new_tokens=max_len,
|
87 |
+
use_cache=True,
|
88 |
+
)
|
89 |
+
output_ids = [token_id for token_id in output_ids.tolist()[0] if token_id != IMAGE_TOKEN_INDEX]
|
90 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
91 |
+
|
92 |
+
target = "システム: "
|
93 |
+
idx = output.find(target)
|
94 |
+
output = output[idx+len(target):]
|
95 |
+
|
96 |
+
return output
|
97 |
+
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
gr.Markdown(f"# LLaVA-JP Demo")
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column():
|
103 |
+
# input_instruction = gr.TextArea(label="instruction", value=DEFAULT_INSTRUCTION)
|
104 |
+
input_image = gr.Image(type="pil", label="image")
|
105 |
+
prompt = gr.Textbox(label="prompt (optional)", value="")
|
106 |
+
with gr.Accordion(label="Configs", open=False):
|
107 |
+
max_len = gr.Slider(
|
108 |
+
minimum=10,
|
109 |
+
maximum=256,
|
110 |
+
value=128,
|
111 |
+
step=5,
|
112 |
+
interactive=True,
|
113 |
+
label="Max New Tokens",
|
114 |
+
)
|
115 |
+
|
116 |
+
temperature = gr.Slider(
|
117 |
+
minimum=0.0,
|
118 |
+
maximum=1.0,
|
119 |
+
value=0.1,
|
120 |
+
step=0.1,
|
121 |
+
interactive=True,
|
122 |
+
label="Temperature",
|
123 |
+
)
|
124 |
+
|
125 |
+
top_p = gr.Slider(
|
126 |
+
minimum=0.5,
|
127 |
+
maximum=1.0,
|
128 |
+
value=0.9,
|
129 |
+
step=0.1,
|
130 |
+
interactive=True,
|
131 |
+
label="Top p",
|
132 |
+
)
|
133 |
+
|
134 |
+
# button
|
135 |
+
input_button = gr.Button(value="Submit")
|
136 |
+
with gr.Column():
|
137 |
+
output = gr.Textbox(label="Output")
|
138 |
+
|
139 |
+
inputs = [input_image, prompt, max_len, temperature, top_p]
|
140 |
+
input_button.click(inference_fn, inputs=inputs, outputs=[output])
|
141 |
+
prompt.submit(inference_fn, inputs=inputs, outputs=[output])
|
142 |
+
img2txt_examples = gr.Examples(examples=[
|
143 |
+
[
|
144 |
+
"./imgs/sample1.jpg",
|
145 |
+
"猫は何をしていますか?",
|
146 |
+
32,
|
147 |
+
0.0,
|
148 |
+
0.9,
|
149 |
+
],
|
150 |
+
[
|
151 |
+
"./imgs/sample2.jpg",
|
152 |
+
"この自動販売機にはどのブランドの飲料が含まれていますか?",
|
153 |
+
256,
|
154 |
+
0.0,
|
155 |
+
0.9,
|
156 |
+
],
|
157 |
+
[
|
158 |
+
"./imgs/sample3.jpg",
|
159 |
+
"この料理の作り方を教えてください。",
|
160 |
+
256,
|
161 |
+
0.0,
|
162 |
+
0.9,
|
163 |
+
],
|
164 |
+
[
|
165 |
+
"./imgs/sample4.jpg",
|
166 |
+
"このコンピュータの名前を教えてください。",
|
167 |
+
256,
|
168 |
+
0.0,
|
169 |
+
0.9,
|
170 |
+
],
|
171 |
+
[
|
172 |
+
"./imgs/sample5.jpg",
|
173 |
+
"これらを使って作ることができる料理を教えてください。",
|
174 |
+
256,
|
175 |
+
0.0,
|
176 |
+
0.9,
|
177 |
+
],
|
178 |
+
], inputs=inputs)
|
179 |
+
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
demo.queue().launch(share=True)
|
imgs/sample1.jpg
ADDED
Git LFS Details
|
imgs/sample2.jpg
ADDED
Git LFS Details
|
imgs/sample3.jpg
ADDED
Git LFS Details
|
imgs/sample4.jpg
ADDED
Git LFS Details
|
imgs/sample5.jpg
ADDED
Git LFS Details
|