from typing import Optional import torch import torch.nn as nn from transformers import ( CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig,\ SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig ) from llava.s2wrapper import forward as multiscale_forward class CLIPVisionTower(nn.Module): def __init__( self, vision_tower_name: str="openai/clip-vit-large-patch14-336", mm_vision_select_layer: int=-2, # v1.5 is -2 mm_vision_select_feature: str="patch", delay_load: bool=False, requires_grad: bool=False, scales: Optional[float] = None ): super().__init__() self.is_loaded = False self.requires_grad = requires_grad self.scales = scales self.vision_tower_name = vision_tower_name self.select_layer = mm_vision_select_layer self.select_feature = mm_vision_select_feature self.image_processor = None self.vision_tower = None if not delay_load: self.load_model() else: if "clip" in self.vision_tower_name: self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) elif "siglip" in self.vision_tower_name: self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) else: raise ValueError(f'Unsupported vision_tower_name: {self.vision_tower_name}') def load_model(self): if "clip" in self.vision_tower_name: self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) elif "siglip" in self.vision_tower_name: self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) else: raise ValueError(f'Unsupported vision_tower_name: {self.vision_tower_name}') self.vision_tower.requires_grad_(self.requires_grad) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features @torch.no_grad() def forward(self, images): if type(images) is list: image_features = [] for image in images: if self.scales is None: image_feature = self._forward_feature(images.unsqueeze(0)) else: image_feature = multiscale_forward( self._forward_feature, images.unsqueeze(0), scales=self.scales, num_prefix_token=0, max_split_size=self.image_processor.size["height"] ) #image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: if self.scales is None: image_features = self._forward_feature(images) else: image_features = multiscale_forward( self._forward_feature, images, scales=self.scales, num_prefix_token=0, max_split_size=self.image_processor.size["height"] ) #image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features def _forward_feature(self, inputs): return self.feature_select(self.vision_tower(inputs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)) @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): if self.scales is None: return self.config.hidden_size return self.config.hidden_size*len(self.scales) @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2