X-RayDemo / app.py
tousin23's picture
Update app.py
7569ad7 verified
import os
from pprint import pprint
from configs.config import parser
from dataset.data_module import DataModule
from models.R2GenGPT import R2GenGPT
import torch
from transformers import BertTokenizer, AutoImageProcessor
from PIL import Image
import numpy as np
import streamlit as st
from lightning.pytorch import seed_everything
# Initialize the app
# st.title("Chest X-ray Report Generator")
# Function to load the model
def load_model(args):
model = R2GenGPT(args)
model.eval()
model.freeze()
return model
# Function to parse image
def _parse_image(vit_feature_extractor, img):
pixel_values = vit_feature_extractor(img, return_tensors="pt").pixel_values
return pixel_values[0]
# Function to generate predictions
def generate_predictions(image_path, vit_feature_extractor, model):
model.llama_tokenizer.padding_side = "right"
with Image.open(image_path) as pil:
array = np.array(pil, dtype=np.uint8)
if array.shape[-1] != 3 or len(array.shape) != 3:
array = np.array(pil.convert("RGB"), dtype=np.uint8)
image = _parse_image(vit_feature_extractor, array)
image = image.unsqueeze(0)
# image = image[None, :]
image = image.to(device='cuda:0')
print("Model Encoding for Image: ", model.encode_img(image))
try:
img_embeds, atts_img = model.encode_img(image)
print("Image embeddings in try blk", img_embeds)
print("Try block for Image Embeddings \n")
except Exception as e:
st.error(e)
print(st.error(e))
print("Except block for Image embeddings \n")
# return []
img_embeds = model.layer_norm(img_embeds)
img_embeds, atts_img = model.prompt_wrap(img_embeds, atts_img)
print("Image embeddings: ", img_embeds)
batch_size = img_embeds.shape[0]
print("Batch size printed: ", batch_size)
bos = torch.ones([batch_size, 1],
dtype=atts_img.dtype,
device=atts_img.device) * model.llama_tokenizer.bos_token_id
bos_embeds = model.embed_tokens(bos)
atts_bos = atts_img[:, :1]
print("Attention: ", atts_bos)
inputs_embeds = torch.cat([bos_embeds, img_embeds], dim=1)
print("Shape of Input emb", inputs_embeds)
inputs_embeds = inputs_embeds.type(torch.float16)
attention_mask = torch.cat([atts_bos, atts_img], dim=1)
print("Shape of Attention mask: ", attention_mask)
try:
with torch.no_grad():
outputs = model.llama_model.generate(inputs_embeds=inputs_embeds)
print("output", outputs)
except Exception as e:
st.error(e)
return []
hypo = [model.decode(i) for i in outputs]
print("Generated Report :", hypo)
return hypo
# Function to perform inference
def inference(args, uploaded_file):
model = load_model(args)
vit_feature_extractor = AutoImageProcessor.from_pretrained(args.vision_model)
with open("/workspace/p10_p10046166_s50051329_427446c1-881f5cce-85191ce1-91a58ba9-0a57d3f5.jpg", "wb") as f:
f.write(uploaded_file.getbuffer())
predictions = generate_predictions("/workspace/p10_p10046166_s50051329_427446c1-881f5cce-85191ce1-91a58ba9-0a57d3f5.jpg", vit_feature_extractor, model)
print("Predictions: ", predictions)
os.remove("/workspace/p10_p10046166_s50051329_427446c1-881f5cce-85191ce1-91a58ba9-0a57d3f5.jpg")
return predictions
# Main function
def main():
#parser = argparse.ArgumentParser()
# other arguments
#parser.add_argument('--file', type=open, action=LoadFromFile)
args = parser.parse_args()
pprint(vars(args))
seed_everything(42, workers=True)
# File uploader for image
model = load_model(args)
vit_feature_extractor = AutoImageProcessor.from_pretrained(args.vision_model)
predictions = generate_predictions("/workspace/p10_p10046166_s57379357_6e511483-c7e1601c-76890b2f-b0c6b55d-e53bcbf6.jpg", vit_feature_extractor, model)
print("Predictions: ", predictions)
print("Inference: ", inference(args, "/workspace/p10_p10046166_s57379357_6e511483-c7e1601c-76890b2f-b0c6b55d-e53bcbf6.jpg"))
#uploaded_file = st.file_uploader("Choose a chest X-ray image...", type="jpg")
#if uploaded_file is not None:
# st.image(uploaded_file, caption='Uploaded Image.', use_column_width=True)
# st.write("")
# st.write("Generating report...")
#predictions = inference(args, uploaded_file)
# if predictions:
# st.write("Generated Report:")
# for pred in predictions:
# print("Generated Report", pred)
# st.write(pred)
# else:
# st.write("Failed to generate report.")
if __name__ == '__main__':
main()