tousin23 commited on
Commit
7755c1c
·
verified ·
1 Parent(s): d6d9061

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -11
app.py CHANGED
@@ -1,16 +1,54 @@
1
  import streamlit as st
2
- from transformers import pipeline
 
 
 
 
 
3
 
4
- sentiment_pipeline = pipeline("sentiment-analysis")
 
 
5
 
6
- st.title("Sentiment Analysis with HuggingFace Spaces")
7
- st.write("Enter a sentence to analyze its sentiment:")
 
 
 
 
 
8
 
9
- user_input = st.text_input("")
10
- if user_input:
11
- result = sentiment_pipeline(user_input)
12
- sentiment = result[0]["label"]
13
- confidence = result[0]["score"]
14
 
15
- st.write(f"Sentiment: {sentiment}")
16
- st.write(f"Confidence: {confidence:.2f}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import torch
3
+ import torchvision.transforms as transforms
4
+ from torchvision.models import resnet50
5
+ from PIL import Image
6
+ import requests
7
+ from io import BytesIO
8
 
9
+ # Load the pre-trained ResNet-50 model
10
+ model = resnet50(pretrained=True)
11
+ model.eval()
12
 
13
+ # Define the image transforms
14
+ transform = transforms.Compose([
15
+ transforms.Resize(256),
16
+ transforms.CenterCrop(224),
17
+ transforms.ToTensor(),
18
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
19
+ ])
20
 
21
+ # Define the label map for ImageNet classes
22
+ LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
23
+ response = requests.get(LABELS_URL)
24
+ labels = response.json()
 
25
 
26
+ # Streamlit UI
27
+ st.title("Image Classification with Pre-trained ResNet-50")
28
+ st.write("Upload an image and the model will predict the class of the object in the image.")
29
+
30
+ # File uploader
31
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
32
+
33
+ if uploaded_file is not None:
34
+ # Open the image file
35
+ image = Image.open(uploaded_file)
36
+
37
+ # Display the image
38
+ st.image(image, caption='Uploaded Image', use_column_width=True)
39
+ st.write("")
40
+ st.write("Classifying...")
41
+
42
+ # Preprocess the image
43
+ image = transform(image).unsqueeze(0)
44
+
45
+ # Predict the class
46
+ with torch.no_grad():
47
+ outputs = model(image)
48
+
49
+ # Get the predicted class
50
+ _, predicted = torch.max(outputs, 1)
51
+ predicted_class = labels[predicted.item()]
52
+
53
+ # Display the result
54
+ st.write(f"Predicted Class: {predicted_class}")