Spaces:
Running
Running
trashchenkov
commited on
Commit
•
4e3ae23
1
Parent(s):
7ea0e11
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain_core.prompts import ChatPromptTemplate
|
3 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
4 |
+
from langchain.chains import create_retrieval_chain
|
5 |
+
from langchain.chat_models.gigachat import GigaChat
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
import os
|
9 |
+
import telebot
|
10 |
+
|
11 |
+
|
12 |
+
def get_yt_links(contexts):
|
13 |
+
html = '''
|
14 |
+
<iframe width="100%" height="200" src="{}?start={}" \
|
15 |
+
title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; \
|
16 |
+
encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" \
|
17 |
+
allowfullscreen></iframe>
|
18 |
+
'''
|
19 |
+
yt_htmls = []
|
20 |
+
for context in contexts:
|
21 |
+
link = context.metadata['link']
|
22 |
+
start = context.metadata['time']
|
23 |
+
yt_htmls.append(html.format(link, start))
|
24 |
+
return yt_htmls
|
25 |
+
|
26 |
+
|
27 |
+
def process_input(text):
|
28 |
+
response = retrieval_chain.invoke({"input": text})
|
29 |
+
bot.send_message(int(user_id), str(response))
|
30 |
+
youtube_links = get_yt_links(response['context'])
|
31 |
+
return response['answer'], youtube_links[0], youtube_links[1], youtube_links[2]
|
32 |
+
|
33 |
+
giga = os.getenv('GIGA')
|
34 |
+
token = os.getenv('BOT')
|
35 |
+
user_id = os.getenv('CREATOR')
|
36 |
+
bot = telebot.TeleBot(token)
|
37 |
+
model_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
38 |
+
model_kwargs = {'device': 'cpu'}
|
39 |
+
encode_kwargs = {'normalize_embeddings': False}
|
40 |
+
embedding = HuggingFaceEmbeddings(model_name=model_name,
|
41 |
+
model_kwargs=model_kwargs,
|
42 |
+
encode_kwargs=encode_kwargs)
|
43 |
+
|
44 |
+
vector_db = FAISS.load_local('faiss_index',
|
45 |
+
embeddings=embedding,
|
46 |
+
allow_dangerous_deserialization=True)
|
47 |
+
llm = GigaChat(credentials=giga, verify_ssl_certs=False, profanity_check=False)
|
48 |
+
|
49 |
+
prompt = ChatPromptTemplate.from_template('''Ответь на вопрос пользователя. \
|
50 |
+
Используй при этом только информацию из контекста. Если в контексте нет \
|
51 |
+
информации для ответа, сообщи об этом пользователю.
|
52 |
+
Контекст: {context}
|
53 |
+
Вопрос: {input}
|
54 |
+
Ответ:'''
|
55 |
+
)
|
56 |
+
|
57 |
+
embedding_retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
58 |
+
|
59 |
+
document_chain = create_stuff_documents_chain(
|
60 |
+
llm=llm,
|
61 |
+
prompt=prompt
|
62 |
+
)
|
63 |
+
|
64 |
+
retrieval_chain = create_retrieval_chain(embedding_retriever, document_chain)
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
with gr.Row():
|
68 |
+
with gr.Column():
|
69 |
+
text_input = gr.Textbox(label="Введите запрос")
|
70 |
+
submit_btn = gr.Button("Отправить запрос")
|
71 |
+
text_output = gr.Textbox(label="Ответ", interactive=False)
|
72 |
+
|
73 |
+
with gr.Column():
|
74 |
+
youtube_video1 = gr.HTML()
|
75 |
+
youtube_video2 = gr.HTML()
|
76 |
+
youtube_video3 = gr.HTML()
|
77 |
+
|
78 |
+
submit_btn.click(process_input, text_input, [text_output, youtube_video1, youtube_video2, youtube_video3])
|
79 |
+
|
80 |
+
|
81 |
+
demo.launch()
|