File size: 14,140 Bytes
047c786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# pylint: skip-file
# type: ignore
import math
import random

import torch
from torch import nn
from torch.nn import functional as F

from .stylegan2_clean_arch import StyleGAN2GeneratorClean


class StyleGAN2GeneratorCSFT(StyleGAN2GeneratorClean):
    """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
    It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
    Args:
        out_size (int): The spatial size of outputs.
        num_style_feat (int): Channel number of style features. Default: 512.
        num_mlp (int): Layer number of MLP style layers. Default: 8.
        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
        narrow (float): The narrow ratio for channels. Default: 1.
        sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
    """

    def __init__(
        self,
        out_size,
        num_style_feat=512,
        num_mlp=8,
        channel_multiplier=2,
        narrow=1,
        sft_half=False,
    ):
        super(StyleGAN2GeneratorCSFT, self).__init__(
            out_size,
            num_style_feat=num_style_feat,
            num_mlp=num_mlp,
            channel_multiplier=channel_multiplier,
            narrow=narrow,
        )
        self.sft_half = sft_half

    def forward(
        self,
        styles,
        conditions,
        input_is_latent=False,
        noise=None,
        randomize_noise=True,
        truncation=1,
        truncation_latent=None,
        inject_index=None,
        return_latents=False,
    ):
        """Forward function for StyleGAN2GeneratorCSFT.
        Args:
            styles (list[Tensor]): Sample codes of styles.
            conditions (list[Tensor]): SFT conditions to generators.
            input_is_latent (bool): Whether input is latent style. Default: False.
            noise (Tensor | None): Input noise or None. Default: None.
            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
            truncation (float): The truncation ratio. Default: 1.
            truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
            inject_index (int | None): The injection index for mixing noise. Default: None.
            return_latents (bool): Whether to return style latents. Default: False.
        """
        # style codes -> latents with Style MLP layer
        if not input_is_latent:
            styles = [self.style_mlp(s) for s in styles]
        # noises
        if noise is None:
            if randomize_noise:
                noise = [None] * self.num_layers  # for each style conv layer
            else:  # use the stored noise
                noise = [
                    getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
                ]
        # style truncation
        if truncation < 1:
            style_truncation = []
            for style in styles:
                style_truncation.append(
                    truncation_latent + truncation * (style - truncation_latent)
                )
            styles = style_truncation
        # get style latents with injection
        if len(styles) == 1:
            inject_index = self.num_latent

            if styles[0].ndim < 3:
                # repeat latent code for all the layers
                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            else:  # used for encoder with different latent code for each layer
                latent = styles[0]
        elif len(styles) == 2:  # mixing noises
            if inject_index is None:
                inject_index = random.randint(1, self.num_latent - 1)
            latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            latent2 = (
                styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
            )
            latent = torch.cat([latent1, latent2], 1)

        # main generation
        out = self.constant_input(latent.shape[0])
        out = self.style_conv1(out, latent[:, 0], noise=noise[0])
        skip = self.to_rgb1(out, latent[:, 1])

        i = 1
        for conv1, conv2, noise1, noise2, to_rgb in zip(
            self.style_convs[::2],
            self.style_convs[1::2],
            noise[1::2],
            noise[2::2],
            self.to_rgbs,
        ):
            out = conv1(out, latent[:, i], noise=noise1)

            # the conditions may have fewer levels
            if i < len(conditions):
                # SFT part to combine the conditions
                if self.sft_half:  # only apply SFT to half of the channels
                    out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
                    out_sft = out_sft * conditions[i - 1] + conditions[i]
                    out = torch.cat([out_same, out_sft], dim=1)
                else:  # apply SFT to all the channels
                    out = out * conditions[i - 1] + conditions[i]

            out = conv2(out, latent[:, i + 1], noise=noise2)
            skip = to_rgb(out, latent[:, i + 2], skip)  # feature back to the rgb space
            i += 2

        image = skip

        if return_latents:
            return image, latent
        else:
            return image, None


class ResBlock(nn.Module):
    """Residual block with bilinear upsampling/downsampling.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
        mode (str): Upsampling/downsampling mode. Options: down | up. Default: down.
    """

    def __init__(self, in_channels, out_channels, mode="down"):
        super(ResBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
        self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
        self.skip = nn.Conv2d(in_channels, out_channels, 1, bias=False)
        if mode == "down":
            self.scale_factor = 0.5
        elif mode == "up":
            self.scale_factor = 2

    def forward(self, x):
        out = F.leaky_relu_(self.conv1(x), negative_slope=0.2)
        # upsample/downsample
        out = F.interpolate(
            out, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
        )
        out = F.leaky_relu_(self.conv2(out), negative_slope=0.2)
        # skip
        x = F.interpolate(
            x, scale_factor=self.scale_factor, mode="bilinear", align_corners=False
        )
        skip = self.skip(x)
        out = out + skip
        return out


class GFPGANv1Clean(nn.Module):
    """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
    It is the clean version without custom compiled CUDA extensions used in StyleGAN2.
    Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
    Args:
        out_size (int): The spatial size of outputs.
        num_style_feat (int): Channel number of style features. Default: 512.
        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
        decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
        fix_decoder (bool): Whether to fix the decoder. Default: True.
        num_mlp (int): Layer number of MLP style layers. Default: 8.
        input_is_latent (bool): Whether input is latent style. Default: False.
        different_w (bool): Whether to use different latent w for different layers. Default: False.
        narrow (float): The narrow ratio for channels. Default: 1.
        sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
    """

    def __init__(
        self,
        state_dict,
    ):
        super(GFPGANv1Clean, self).__init__()

        out_size = 512
        num_style_feat = 512
        channel_multiplier = 2
        decoder_load_path = None
        fix_decoder = False
        num_mlp = 8
        input_is_latent = True
        different_w = True
        narrow = 1
        sft_half = True

        self.model_arch = "GFPGAN"
        self.sub_type = "Face SR"
        self.scale = 8
        self.in_nc = 3
        self.out_nc = 3
        self.state = state_dict

        self.supports_fp16 = False
        self.supports_bf16 = True
        self.min_size_restriction = 512

        self.input_is_latent = input_is_latent
        self.different_w = different_w
        self.num_style_feat = num_style_feat

        unet_narrow = narrow * 0.5  # by default, use a half of input channels
        channels = {
            "4": int(512 * unet_narrow),
            "8": int(512 * unet_narrow),
            "16": int(512 * unet_narrow),
            "32": int(512 * unet_narrow),
            "64": int(256 * channel_multiplier * unet_narrow),
            "128": int(128 * channel_multiplier * unet_narrow),
            "256": int(64 * channel_multiplier * unet_narrow),
            "512": int(32 * channel_multiplier * unet_narrow),
            "1024": int(16 * channel_multiplier * unet_narrow),
        }

        self.log_size = int(math.log(out_size, 2))
        first_out_size = 2 ** (int(math.log(out_size, 2)))

        self.conv_body_first = nn.Conv2d(3, channels[f"{first_out_size}"], 1)

        # downsample
        in_channels = channels[f"{first_out_size}"]
        self.conv_body_down = nn.ModuleList()
        for i in range(self.log_size, 2, -1):
            out_channels = channels[f"{2**(i - 1)}"]
            self.conv_body_down.append(ResBlock(in_channels, out_channels, mode="down"))
            in_channels = out_channels

        self.final_conv = nn.Conv2d(in_channels, channels["4"], 3, 1, 1)

        # upsample
        in_channels = channels["4"]
        self.conv_body_up = nn.ModuleList()
        for i in range(3, self.log_size + 1):
            out_channels = channels[f"{2**i}"]
            self.conv_body_up.append(ResBlock(in_channels, out_channels, mode="up"))
            in_channels = out_channels

        # to RGB
        self.toRGB = nn.ModuleList()
        for i in range(3, self.log_size + 1):
            self.toRGB.append(nn.Conv2d(channels[f"{2**i}"], 3, 1))

        if different_w:
            linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
        else:
            linear_out_channel = num_style_feat

        self.final_linear = nn.Linear(channels["4"] * 4 * 4, linear_out_channel)

        # the decoder: stylegan2 generator with SFT modulations
        self.stylegan_decoder = StyleGAN2GeneratorCSFT(
            out_size=out_size,
            num_style_feat=num_style_feat,
            num_mlp=num_mlp,
            channel_multiplier=channel_multiplier,
            narrow=narrow,
            sft_half=sft_half,
        )

        # load pre-trained stylegan2 model if necessary
        if decoder_load_path:
            self.stylegan_decoder.load_state_dict(
                torch.load(
                    decoder_load_path, map_location=lambda storage, loc: storage
                )["params_ema"]
            )
        # fix decoder without updating params
        if fix_decoder:
            for _, param in self.stylegan_decoder.named_parameters():
                param.requires_grad = False

        # for SFT modulations (scale and shift)
        self.condition_scale = nn.ModuleList()
        self.condition_shift = nn.ModuleList()
        for i in range(3, self.log_size + 1):
            out_channels = channels[f"{2**i}"]
            if sft_half:
                sft_out_channels = out_channels
            else:
                sft_out_channels = out_channels * 2
            self.condition_scale.append(
                nn.Sequential(
                    nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                    nn.LeakyReLU(0.2, True),
                    nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
                )
            )
            self.condition_shift.append(
                nn.Sequential(
                    nn.Conv2d(out_channels, out_channels, 3, 1, 1),
                    nn.LeakyReLU(0.2, True),
                    nn.Conv2d(out_channels, sft_out_channels, 3, 1, 1),
                )
            )
        self.load_state_dict(state_dict)

    def forward(
        self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
    ):
        """Forward function for GFPGANv1Clean.
        Args:
            x (Tensor): Input images.
            return_latents (bool): Whether to return style latents. Default: False.
            return_rgb (bool): Whether return intermediate rgb images. Default: True.
            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
        """
        conditions = []
        unet_skips = []
        out_rgbs = []

        # encoder
        feat = F.leaky_relu_(self.conv_body_first(x), negative_slope=0.2)
        for i in range(self.log_size - 2):
            feat = self.conv_body_down[i](feat)
            unet_skips.insert(0, feat)
        feat = F.leaky_relu_(self.final_conv(feat), negative_slope=0.2)

        # style code
        style_code = self.final_linear(feat.view(feat.size(0), -1))
        if self.different_w:
            style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)

        # decode
        for i in range(self.log_size - 2):
            # add unet skip
            feat = feat + unet_skips[i]
            # ResUpLayer
            feat = self.conv_body_up[i](feat)
            # generate scale and shift for SFT layers
            scale = self.condition_scale[i](feat)
            conditions.append(scale.clone())
            shift = self.condition_shift[i](feat)
            conditions.append(shift.clone())
            # generate rgb images
            if return_rgb:
                out_rgbs.append(self.toRGB[i](feat))

        # decoder
        image, _ = self.stylegan_decoder(
            [style_code],
            conditions,
            return_latents=return_latents,
            input_is_latent=self.input_is_latent,
            randomize_noise=randomize_noise,
        )

        return image, out_rgbs