File size: 19,869 Bytes
047c786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# pylint: skip-file
# type: ignore
import math
import random

import torch
from torch import nn
from torch.nn import functional as F

from .fused_act import FusedLeakyReLU
from .stylegan2_arch import (
    ConvLayer,
    EqualConv2d,
    EqualLinear,
    ResBlock,
    ScaledLeakyReLU,
    StyleGAN2Generator,
)


class StyleGAN2GeneratorSFT(StyleGAN2Generator):
    """StyleGAN2 Generator with SFT modulation (Spatial Feature Transform).
    Args:
        out_size (int): The spatial size of outputs.
        num_style_feat (int): Channel number of style features. Default: 512.
        num_mlp (int): Layer number of MLP style layers. Default: 8.
        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
        resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
            applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
        lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
        narrow (float): The narrow ratio for channels. Default: 1.
        sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
    """

    def __init__(
        self,
        out_size,
        num_style_feat=512,
        num_mlp=8,
        channel_multiplier=2,
        resample_kernel=(1, 3, 3, 1),
        lr_mlp=0.01,
        narrow=1,
        sft_half=False,
    ):
        super(StyleGAN2GeneratorSFT, self).__init__(
            out_size,
            num_style_feat=num_style_feat,
            num_mlp=num_mlp,
            channel_multiplier=channel_multiplier,
            resample_kernel=resample_kernel,
            lr_mlp=lr_mlp,
            narrow=narrow,
        )
        self.sft_half = sft_half

    def forward(
        self,
        styles,
        conditions,
        input_is_latent=False,
        noise=None,
        randomize_noise=True,
        truncation=1,
        truncation_latent=None,
        inject_index=None,
        return_latents=False,
    ):
        """Forward function for StyleGAN2GeneratorSFT.
        Args:
            styles (list[Tensor]): Sample codes of styles.
            conditions (list[Tensor]): SFT conditions to generators.
            input_is_latent (bool): Whether input is latent style. Default: False.
            noise (Tensor | None): Input noise or None. Default: None.
            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
            truncation (float): The truncation ratio. Default: 1.
            truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
            inject_index (int | None): The injection index for mixing noise. Default: None.
            return_latents (bool): Whether to return style latents. Default: False.
        """
        # style codes -> latents with Style MLP layer
        if not input_is_latent:
            styles = [self.style_mlp(s) for s in styles]
        # noises
        if noise is None:
            if randomize_noise:
                noise = [None] * self.num_layers  # for each style conv layer
            else:  # use the stored noise
                noise = [
                    getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
                ]
        # style truncation
        if truncation < 1:
            style_truncation = []
            for style in styles:
                style_truncation.append(
                    truncation_latent + truncation * (style - truncation_latent)
                )
            styles = style_truncation
        # get style latents with injection
        if len(styles) == 1:
            inject_index = self.num_latent

            if styles[0].ndim < 3:
                # repeat latent code for all the layers
                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            else:  # used for encoder with different latent code for each layer
                latent = styles[0]
        elif len(styles) == 2:  # mixing noises
            if inject_index is None:
                inject_index = random.randint(1, self.num_latent - 1)
            latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            latent2 = (
                styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
            )
            latent = torch.cat([latent1, latent2], 1)

        # main generation
        out = self.constant_input(latent.shape[0])
        out = self.style_conv1(out, latent[:, 0], noise=noise[0])
        skip = self.to_rgb1(out, latent[:, 1])

        i = 1
        for conv1, conv2, noise1, noise2, to_rgb in zip(
            self.style_convs[::2],
            self.style_convs[1::2],
            noise[1::2],
            noise[2::2],
            self.to_rgbs,
        ):
            out = conv1(out, latent[:, i], noise=noise1)

            # the conditions may have fewer levels
            if i < len(conditions):
                # SFT part to combine the conditions
                if self.sft_half:  # only apply SFT to half of the channels
                    out_same, out_sft = torch.split(out, int(out.size(1) // 2), dim=1)
                    out_sft = out_sft * conditions[i - 1] + conditions[i]
                    out = torch.cat([out_same, out_sft], dim=1)
                else:  # apply SFT to all the channels
                    out = out * conditions[i - 1] + conditions[i]

            out = conv2(out, latent[:, i + 1], noise=noise2)
            skip = to_rgb(out, latent[:, i + 2], skip)  # feature back to the rgb space
            i += 2

        image = skip

        if return_latents:
            return image, latent
        else:
            return image, None


class ConvUpLayer(nn.Module):
    """Convolutional upsampling layer. It uses bilinear upsampler + Conv.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
        kernel_size (int): Size of the convolving kernel.
        stride (int): Stride of the convolution. Default: 1
        padding (int): Zero-padding added to both sides of the input. Default: 0.
        bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``.
        bias_init_val (float): Bias initialized value. Default: 0.
        activate (bool): Whether use activateion. Default: True.
    """

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        padding=0,
        bias=True,
        bias_init_val=0,
        activate=True,
    ):
        super(ConvUpLayer, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        # self.scale is used to scale the convolution weights, which is related to the common initializations.
        self.scale = 1 / math.sqrt(in_channels * kernel_size**2)

        self.weight = nn.Parameter(
            torch.randn(out_channels, in_channels, kernel_size, kernel_size)
        )

        if bias and not activate:
            self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val))
        else:
            self.register_parameter("bias", None)

        # activation
        if activate:
            if bias:
                self.activation = FusedLeakyReLU(out_channels)
            else:
                self.activation = ScaledLeakyReLU(0.2)
        else:
            self.activation = None

    def forward(self, x):
        # bilinear upsample
        out = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
        # conv
        out = F.conv2d(
            out,
            self.weight * self.scale,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
        )
        # activation
        if self.activation is not None:
            out = self.activation(out)
        return out


class ResUpBlock(nn.Module):
    """Residual block with upsampling.
    Args:
        in_channels (int): Channel number of the input.
        out_channels (int): Channel number of the output.
    """

    def __init__(self, in_channels, out_channels):
        super(ResUpBlock, self).__init__()

        self.conv1 = ConvLayer(in_channels, in_channels, 3, bias=True, activate=True)
        self.conv2 = ConvUpLayer(
            in_channels, out_channels, 3, stride=1, padding=1, bias=True, activate=True
        )
        self.skip = ConvUpLayer(
            in_channels, out_channels, 1, bias=False, activate=False
        )

    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        skip = self.skip(x)
        out = (out + skip) / math.sqrt(2)
        return out


class GFPGANv1(nn.Module):
    """The GFPGAN architecture: Unet + StyleGAN2 decoder with SFT.
    Ref: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior.
    Args:
        out_size (int): The spatial size of outputs.
        num_style_feat (int): Channel number of style features. Default: 512.
        channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
        resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be
            applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1).
        decoder_load_path (str): The path to the pre-trained decoder model (usually, the StyleGAN2). Default: None.
        fix_decoder (bool): Whether to fix the decoder. Default: True.
        num_mlp (int): Layer number of MLP style layers. Default: 8.
        lr_mlp (float): Learning rate multiplier for mlp layers. Default: 0.01.
        input_is_latent (bool): Whether input is latent style. Default: False.
        different_w (bool): Whether to use different latent w for different layers. Default: False.
        narrow (float): The narrow ratio for channels. Default: 1.
        sft_half (bool): Whether to apply SFT on half of the input channels. Default: False.
    """

    def __init__(
        self,
        out_size,
        num_style_feat=512,
        channel_multiplier=1,
        resample_kernel=(1, 3, 3, 1),
        decoder_load_path=None,
        fix_decoder=True,
        # for stylegan decoder
        num_mlp=8,
        lr_mlp=0.01,
        input_is_latent=False,
        different_w=False,
        narrow=1,
        sft_half=False,
    ):
        super(GFPGANv1, self).__init__()
        self.input_is_latent = input_is_latent
        self.different_w = different_w
        self.num_style_feat = num_style_feat

        unet_narrow = narrow * 0.5  # by default, use a half of input channels
        channels = {
            "4": int(512 * unet_narrow),
            "8": int(512 * unet_narrow),
            "16": int(512 * unet_narrow),
            "32": int(512 * unet_narrow),
            "64": int(256 * channel_multiplier * unet_narrow),
            "128": int(128 * channel_multiplier * unet_narrow),
            "256": int(64 * channel_multiplier * unet_narrow),
            "512": int(32 * channel_multiplier * unet_narrow),
            "1024": int(16 * channel_multiplier * unet_narrow),
        }

        self.log_size = int(math.log(out_size, 2))
        first_out_size = 2 ** (int(math.log(out_size, 2)))

        self.conv_body_first = ConvLayer(
            3, channels[f"{first_out_size}"], 1, bias=True, activate=True
        )

        # downsample
        in_channels = channels[f"{first_out_size}"]
        self.conv_body_down = nn.ModuleList()
        for i in range(self.log_size, 2, -1):
            out_channels = channels[f"{2**(i - 1)}"]
            self.conv_body_down.append(
                ResBlock(in_channels, out_channels, resample_kernel)
            )
            in_channels = out_channels

        self.final_conv = ConvLayer(
            in_channels, channels["4"], 3, bias=True, activate=True
        )

        # upsample
        in_channels = channels["4"]
        self.conv_body_up = nn.ModuleList()
        for i in range(3, self.log_size + 1):
            out_channels = channels[f"{2**i}"]
            self.conv_body_up.append(ResUpBlock(in_channels, out_channels))
            in_channels = out_channels

        # to RGB
        self.toRGB = nn.ModuleList()
        for i in range(3, self.log_size + 1):
            self.toRGB.append(
                EqualConv2d(
                    channels[f"{2**i}"],
                    3,
                    1,
                    stride=1,
                    padding=0,
                    bias=True,
                    bias_init_val=0,
                )
            )

        if different_w:
            linear_out_channel = (int(math.log(out_size, 2)) * 2 - 2) * num_style_feat
        else:
            linear_out_channel = num_style_feat

        self.final_linear = EqualLinear(
            channels["4"] * 4 * 4,
            linear_out_channel,
            bias=True,
            bias_init_val=0,
            lr_mul=1,
            activation=None,
        )

        # the decoder: stylegan2 generator with SFT modulations
        self.stylegan_decoder = StyleGAN2GeneratorSFT(
            out_size=out_size,
            num_style_feat=num_style_feat,
            num_mlp=num_mlp,
            channel_multiplier=channel_multiplier,
            resample_kernel=resample_kernel,
            lr_mlp=lr_mlp,
            narrow=narrow,
            sft_half=sft_half,
        )

        # load pre-trained stylegan2 model if necessary
        if decoder_load_path:
            self.stylegan_decoder.load_state_dict(
                torch.load(
                    decoder_load_path, map_location=lambda storage, loc: storage
                )["params_ema"]
            )
        # fix decoder without updating params
        if fix_decoder:
            for _, param in self.stylegan_decoder.named_parameters():
                param.requires_grad = False

        # for SFT modulations (scale and shift)
        self.condition_scale = nn.ModuleList()
        self.condition_shift = nn.ModuleList()
        for i in range(3, self.log_size + 1):
            out_channels = channels[f"{2**i}"]
            if sft_half:
                sft_out_channels = out_channels
            else:
                sft_out_channels = out_channels * 2
            self.condition_scale.append(
                nn.Sequential(
                    EqualConv2d(
                        out_channels,
                        out_channels,
                        3,
                        stride=1,
                        padding=1,
                        bias=True,
                        bias_init_val=0,
                    ),
                    ScaledLeakyReLU(0.2),
                    EqualConv2d(
                        out_channels,
                        sft_out_channels,
                        3,
                        stride=1,
                        padding=1,
                        bias=True,
                        bias_init_val=1,
                    ),
                )
            )
            self.condition_shift.append(
                nn.Sequential(
                    EqualConv2d(
                        out_channels,
                        out_channels,
                        3,
                        stride=1,
                        padding=1,
                        bias=True,
                        bias_init_val=0,
                    ),
                    ScaledLeakyReLU(0.2),
                    EqualConv2d(
                        out_channels,
                        sft_out_channels,
                        3,
                        stride=1,
                        padding=1,
                        bias=True,
                        bias_init_val=0,
                    ),
                )
            )

    def forward(
        self, x, return_latents=False, return_rgb=True, randomize_noise=True, **kwargs
    ):
        """Forward function for GFPGANv1.
        Args:
            x (Tensor): Input images.
            return_latents (bool): Whether to return style latents. Default: False.
            return_rgb (bool): Whether return intermediate rgb images. Default: True.
            randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
        """
        conditions = []
        unet_skips = []
        out_rgbs = []

        # encoder
        feat = self.conv_body_first(x)
        for i in range(self.log_size - 2):
            feat = self.conv_body_down[i](feat)
            unet_skips.insert(0, feat)

        feat = self.final_conv(feat)

        # style code
        style_code = self.final_linear(feat.view(feat.size(0), -1))
        if self.different_w:
            style_code = style_code.view(style_code.size(0), -1, self.num_style_feat)

        # decode
        for i in range(self.log_size - 2):
            # add unet skip
            feat = feat + unet_skips[i]
            # ResUpLayer
            feat = self.conv_body_up[i](feat)
            # generate scale and shift for SFT layers
            scale = self.condition_scale[i](feat)
            conditions.append(scale.clone())
            shift = self.condition_shift[i](feat)
            conditions.append(shift.clone())
            # generate rgb images
            if return_rgb:
                out_rgbs.append(self.toRGB[i](feat))

        # decoder
        image, _ = self.stylegan_decoder(
            [style_code],
            conditions,
            return_latents=return_latents,
            input_is_latent=self.input_is_latent,
            randomize_noise=randomize_noise,
        )

        return image, out_rgbs


class FacialComponentDiscriminator(nn.Module):
    """Facial component (eyes, mouth, noise) discriminator used in GFPGAN."""

    def __init__(self):
        super(FacialComponentDiscriminator, self).__init__()
        # It now uses a VGG-style architectrue with fixed model size
        self.conv1 = ConvLayer(
            3,
            64,
            3,
            downsample=False,
            resample_kernel=(1, 3, 3, 1),
            bias=True,
            activate=True,
        )
        self.conv2 = ConvLayer(
            64,
            128,
            3,
            downsample=True,
            resample_kernel=(1, 3, 3, 1),
            bias=True,
            activate=True,
        )
        self.conv3 = ConvLayer(
            128,
            128,
            3,
            downsample=False,
            resample_kernel=(1, 3, 3, 1),
            bias=True,
            activate=True,
        )
        self.conv4 = ConvLayer(
            128,
            256,
            3,
            downsample=True,
            resample_kernel=(1, 3, 3, 1),
            bias=True,
            activate=True,
        )
        self.conv5 = ConvLayer(
            256,
            256,
            3,
            downsample=False,
            resample_kernel=(1, 3, 3, 1),
            bias=True,
            activate=True,
        )
        self.final_conv = ConvLayer(256, 1, 3, bias=True, activate=False)

    def forward(self, x, return_feats=False, **kwargs):
        """Forward function for FacialComponentDiscriminator.
        Args:
            x (Tensor): Input images.
            return_feats (bool): Whether to return intermediate features. Default: False.
        """
        feat = self.conv1(x)
        feat = self.conv3(self.conv2(feat))
        rlt_feats = []
        if return_feats:
            rlt_feats.append(feat.clone())
        feat = self.conv5(self.conv4(feat))
        if return_feats:
            rlt_feats.append(feat.clone())
        out = self.final_conv(feat)

        if return_feats:
            return out, rlt_feats
        else:
            return out, None