Test / modules /patch_clip.py
TRISTAN AESCHBACH
add entire Fooocus repo
047c786
raw
history blame
7.73 kB
# Consistent with Kohya/A1111 to reduce differences between model training and inference.
import os
import torch
import ldm_patched.controlnet.cldm
import ldm_patched.k_diffusion.sampling
import ldm_patched.ldm.modules.attention
import ldm_patched.ldm.modules.diffusionmodules.model
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.modules.args_parser
import ldm_patched.modules.model_base
import ldm_patched.modules.model_management
import ldm_patched.modules.model_patcher
import ldm_patched.modules.samplers
import ldm_patched.modules.sd
import ldm_patched.modules.sd1_clip
import ldm_patched.modules.clip_vision
import ldm_patched.modules.ops as ops
from modules.ops import use_patched_ops
from transformers import CLIPTextModel, CLIPTextConfig, modeling_utils, CLIPVisionConfig, CLIPVisionModelWithProjection
def patched_encode_token_weights(self, token_weight_pairs):
to_encode = list()
max_token_len = 0
has_weights = False
for x in token_weight_pairs:
tokens = list(map(lambda a: a[0], x))
max_token_len = max(len(tokens), max_token_len)
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
to_encode.append(tokens)
sections = len(to_encode)
if has_weights or sections == 0:
to_encode.append(ldm_patched.modules.sd1_clip.gen_empty_tokens(self.special_tokens, max_token_len))
out, pooled = self.encode(to_encode)
if pooled is not None:
first_pooled = pooled[0:1].to(ldm_patched.modules.model_management.intermediate_device())
else:
first_pooled = pooled
output = []
for k in range(0, sections):
z = out[k:k + 1]
if has_weights:
original_mean = z.mean()
z_empty = out[-1]
for i in range(len(z)):
for j in range(len(z[i])):
weight = token_weight_pairs[k][j][1]
if weight != 1.0:
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
new_mean = z.mean()
z = z * (original_mean / new_mean)
output.append(z)
if len(output) == 0:
return out[-1:].to(ldm_patched.modules.model_management.intermediate_device()), first_pooled
return torch.cat(output, dim=-2).to(ldm_patched.modules.model_management.intermediate_device()), first_pooled
def patched_SDClipModel__init__(self, max_length=77, freeze=True, layer="last", layer_idx=None,
textmodel_json_config=None, dtype=None, special_tokens=None,
layer_norm_hidden_state=True, **kwargs):
torch.nn.Module.__init__(self)
assert layer in self.LAYERS
if special_tokens is None:
special_tokens = {"start": 49406, "end": 49407, "pad": 49407}
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(ldm_patched.modules.sd1_clip.__file__)),
"sd1_clip_config.json")
config = CLIPTextConfig.from_json_file(textmodel_json_config)
self.num_layers = config.num_hidden_layers
with use_patched_ops(ops.manual_cast):
with modeling_utils.no_init_weights():
self.transformer = CLIPTextModel(config)
if dtype is not None:
self.transformer.to(dtype)
self.transformer.text_model.embeddings.to(torch.float32)
if freeze:
self.freeze()
self.max_length = max_length
self.layer = layer
self.layer_idx = None
self.special_tokens = special_tokens
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.enable_attention_masks = False
self.layer_norm_hidden_state = layer_norm_hidden_state
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.clip_layer(layer_idx)
self.layer_default = (self.layer, self.layer_idx)
def patched_SDClipModel_forward(self, tokens):
backup_embeds = self.transformer.get_input_embeddings()
device = backup_embeds.weight.device
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
tokens = torch.LongTensor(tokens).to(device)
attention_mask = None
if self.enable_attention_masks:
attention_mask = torch.zeros_like(tokens)
max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
for x in range(attention_mask.shape[0]):
for y in range(attention_mask.shape[1]):
attention_mask[x, y] = 1
if tokens[x, y] == max_token:
break
outputs = self.transformer(input_ids=tokens, attention_mask=attention_mask,
output_hidden_states=self.layer == "hidden")
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
if self.layer_norm_hidden_state:
z = self.transformer.text_model.final_layer_norm(z)
if hasattr(outputs, "pooler_output"):
pooled_output = outputs.pooler_output.float()
else:
pooled_output = None
if self.text_projection is not None and pooled_output is not None:
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
return z.float(), pooled_output
def patched_ClipVisionModel__init__(self, json_config):
config = CLIPVisionConfig.from_json_file(json_config)
self.load_device = ldm_patched.modules.model_management.text_encoder_device()
self.offload_device = ldm_patched.modules.model_management.text_encoder_offload_device()
if ldm_patched.modules.model_management.should_use_fp16(self.load_device, prioritize_performance=False):
self.dtype = torch.float16
else:
self.dtype = torch.float32
with use_patched_ops(ops.manual_cast):
with modeling_utils.no_init_weights():
self.model = CLIPVisionModelWithProjection(config)
self.model.to(self.dtype)
self.patcher = ldm_patched.modules.model_patcher.ModelPatcher(
self.model,
load_device=self.load_device,
offload_device=self.offload_device
)
def patched_ClipVisionModel_encode_image(self, image):
ldm_patched.modules.model_management.load_model_gpu(self.patcher)
pixel_values = ldm_patched.modules.clip_vision.clip_preprocess(image.to(self.load_device))
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
for k in outputs:
t = outputs[k]
if t is not None:
if k == 'hidden_states':
outputs["penultimate_hidden_states"] = t[-2].to(ldm_patched.modules.model_management.intermediate_device())
outputs["hidden_states"] = None
else:
outputs[k] = t.to(ldm_patched.modules.model_management.intermediate_device())
return outputs
def patch_all_clip():
ldm_patched.modules.sd1_clip.ClipTokenWeightEncoder.encode_token_weights = patched_encode_token_weights
ldm_patched.modules.sd1_clip.SDClipModel.__init__ = patched_SDClipModel__init__
ldm_patched.modules.sd1_clip.SDClipModel.forward = patched_SDClipModel_forward
ldm_patched.modules.clip_vision.ClipVisionModel.__init__ = patched_ClipVisionModel__init__
ldm_patched.modules.clip_vision.ClipVisionModel.encode_image = patched_ClipVisionModel_encode_image
return