Spaces:
Runtime error
Runtime error
# Fooocus GPT2 Expansion | |
# Algorithm created by Lvmin Zhang at 2023, Stanford | |
# If used inside Fooocus, any use is permitted. | |
# If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0). | |
# This applies to the word list, vocab, model, and algorithm. | |
import os | |
import torch | |
import math | |
import ldm_patched.modules.model_management as model_management | |
from transformers.generation.logits_process import LogitsProcessorList | |
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed | |
from modules.config import path_fooocus_expansion | |
from ldm_patched.modules.model_patcher import ModelPatcher | |
# limitation of np.random.seed(), called from transformers.set_seed() | |
SEED_LIMIT_NUMPY = 2**32 | |
neg_inf = - 8192.0 | |
def safe_str(x): | |
x = str(x) | |
for _ in range(16): | |
x = x.replace(' ', ' ') | |
return x.strip(",. \r\n") | |
def remove_pattern(x, pattern): | |
for p in pattern: | |
x = x.replace(p, '') | |
return x | |
class FooocusExpansion: | |
def __init__(self): | |
self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion) | |
positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'), | |
encoding='utf-8').read().splitlines() | |
positive_words = ['Δ ' + x.lower() for x in positive_words if x != ''] | |
self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf | |
debug_list = [] | |
for k, v in self.tokenizer.vocab.items(): | |
if k in positive_words: | |
self.logits_bias[0, v] = 0 | |
debug_list.append(k[1:]) | |
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.') | |
# debug_list = '\n'.join(sorted(debug_list)) | |
# print(debug_list) | |
# t11 = self.tokenizer(',', return_tensors="np") | |
# t198 = self.tokenizer('\n', return_tensors="np") | |
# eos = self.tokenizer.eos_token_id | |
self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion) | |
self.model.eval() | |
load_device = model_management.text_encoder_device() | |
offload_device = model_management.text_encoder_offload_device() | |
# MPS hack | |
if model_management.is_device_mps(load_device): | |
load_device = torch.device('cpu') | |
offload_device = torch.device('cpu') | |
use_fp16 = model_management.should_use_fp16(device=load_device) | |
if use_fp16: | |
self.model.half() | |
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device) | |
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.') | |
def logits_processor(self, input_ids, scores): | |
assert scores.ndim == 2 and scores.shape[0] == 1 | |
self.logits_bias = self.logits_bias.to(scores) | |
bias = self.logits_bias.clone() | |
bias[0, input_ids[0].to(bias.device).long()] = neg_inf | |
bias[0, 11] = 0 | |
return scores + bias | |
def __call__(self, prompt, seed): | |
if prompt == '': | |
return '' | |
if self.patcher.current_device != self.patcher.load_device: | |
print('Fooocus Expansion loaded by itself.') | |
model_management.load_model_gpu(self.patcher) | |
seed = int(seed) % SEED_LIMIT_NUMPY | |
set_seed(seed) | |
prompt = safe_str(prompt) + ',' | |
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt") | |
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device) | |
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device) | |
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1]) | |
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0)) | |
max_new_tokens = max_token_length - current_token_length | |
if max_new_tokens == 0: | |
return prompt[:-1] | |
# https://huggingface.co/blog/introducing-csearch | |
# https://huggingface.co/docs/transformers/generation_strategies | |
features = self.model.generate(**tokenized_kwargs, | |
top_k=100, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
logits_processor=LogitsProcessorList([self.logits_processor])) | |
response = self.tokenizer.batch_decode(features, skip_special_tokens=True) | |
result = safe_str(response[0]) | |
return result | |