Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
############################################################# | |
# File: layernorm.py | |
# Created Date: Tuesday April 28th 2022 | |
# Author: Chen Xuanhong | |
# Email: chenxuanhongzju@outlook.com | |
# Last Modified: Thursday, 20th April 2023 9:28:20 am | |
# Modified By: Chen Xuanhong | |
# Copyright (c) 2020 Shanghai Jiao Tong University | |
############################################################# | |
import torch | |
import torch.nn as nn | |
class LayerNormFunction(torch.autograd.Function): | |
def forward(ctx, x, weight, bias, eps): | |
ctx.eps = eps | |
N, C, H, W = x.size() | |
mu = x.mean(1, keepdim=True) | |
var = (x - mu).pow(2).mean(1, keepdim=True) | |
y = (x - mu) / (var + eps).sqrt() | |
ctx.save_for_backward(y, var, weight) | |
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) | |
return y | |
def backward(ctx, grad_output): | |
eps = ctx.eps | |
N, C, H, W = grad_output.size() | |
y, var, weight = ctx.saved_variables | |
g = grad_output * weight.view(1, C, 1, 1) | |
mean_g = g.mean(dim=1, keepdim=True) | |
mean_gy = (g * y).mean(dim=1, keepdim=True) | |
gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) | |
return ( | |
gx, | |
(grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), | |
grad_output.sum(dim=3).sum(dim=2).sum(dim=0), | |
None, | |
) | |
class LayerNorm2d(nn.Module): | |
def __init__(self, channels, eps=1e-6): | |
super(LayerNorm2d, self).__init__() | |
self.register_parameter("weight", nn.Parameter(torch.ones(channels))) | |
self.register_parameter("bias", nn.Parameter(torch.zeros(channels))) | |
self.eps = eps | |
def forward(self, x): | |
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) | |
class GRN(nn.Module): | |
"""GRN (Global Response Normalization) layer""" | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, dim, 1, 1)) | |
self.beta = nn.Parameter(torch.zeros(1, dim, 1, 1)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=(2, 3), keepdim=True) | |
Nx = Gx / (Gx.mean(dim=1, keepdim=True) + 1e-6) | |
return self.gamma * (x * Nx) + self.beta + x | |