Test / ldm_patched /pfn /model_loading.py
TRISTAN AESCHBACH
add entire Fooocus repo
047c786
import logging as logger
from .architecture.DAT import DAT
from .architecture.face.codeformer import CodeFormer
from .architecture.face.gfpganv1_clean_arch import GFPGANv1Clean
from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.OmniSR.OmniSR import OmniSR
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SCUNet import SCUNet
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
from .architecture.Swin2SR import Swin2SR
from .architecture.SwinIR import SwinIR
from .types import PyTorchModel
class UnsupportedModel(Exception):
pass
def load_state_dict(state_dict) -> PyTorchModel:
logger.debug(f"Loading state dict into pytorch model arch")
state_dict_keys = list(state_dict.keys())
if "params_ema" in state_dict_keys:
state_dict = state_dict["params_ema"]
elif "params-ema" in state_dict_keys:
state_dict = state_dict["params-ema"]
elif "params" in state_dict_keys:
state_dict = state_dict["params"]
state_dict_keys = list(state_dict.keys())
# SRVGGNet Real-ESRGAN (v2)
if "body.0.weight" in state_dict_keys and "body.1.weight" in state_dict_keys:
model = RealESRGANv2(state_dict)
# SPSR (ESRGAN with lots of extra layers)
elif "f_HR_conv1.0.weight" in state_dict:
model = SPSR(state_dict)
# Swift-SRGAN
elif (
"model" in state_dict_keys
and "initial.cnn.depthwise.weight" in state_dict["model"].keys()
):
model = SwiftSRGAN(state_dict)
# SwinIR, Swin2SR, HAT
elif "layers.0.residual_group.blocks.0.norm1.weight" in state_dict_keys:
if (
"layers.0.residual_group.blocks.0.conv_block.cab.0.weight"
in state_dict_keys
):
model = HAT(state_dict)
elif "patch_embed.proj.weight" in state_dict_keys:
model = Swin2SR(state_dict)
else:
model = SwinIR(state_dict)
# GFPGAN
elif (
"toRGB.0.weight" in state_dict_keys
and "stylegan_decoder.style_mlp.1.weight" in state_dict_keys
):
model = GFPGANv1Clean(state_dict)
# RestoreFormer
elif (
"encoder.conv_in.weight" in state_dict_keys
and "encoder.down.0.block.0.norm1.weight" in state_dict_keys
):
model = RestoreFormer(state_dict)
elif (
"encoder.blocks.0.weight" in state_dict_keys
and "quantize.embedding.weight" in state_dict_keys
):
model = CodeFormer(state_dict)
# LaMa
elif (
"model.model.1.bn_l.running_mean" in state_dict_keys
or "generator.model.1.bn_l.running_mean" in state_dict_keys
):
model = LaMa(state_dict)
# Omni-SR
elif "residual_layer.0.residual_layer.0.layer.0.fn.0.weight" in state_dict_keys:
model = OmniSR(state_dict)
# SCUNet
elif "m_head.0.weight" in state_dict_keys and "m_tail.0.weight" in state_dict_keys:
model = SCUNet(state_dict)
# DAT
elif "layers.0.blocks.2.attn.attn_mask_0" in state_dict_keys:
model = DAT(state_dict)
# Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1
else:
try:
model = ESRGAN(state_dict)
except:
# pylint: disable=raise-missing-from
raise UnsupportedModel
return model