import gradio as gr from transformers import pipeline pipe = pipeline("image-classification", "trpakov/vit-pneumonia") def classify_image(image): outputs = pipe(image) outputs = { x["label"]: x["score"] for x in sorted(outputs, key=lambda x: x["label"]) } return outputs with gr.Blocks( title="ViT Chest X-ray Classification", ) as demo: gr.Markdown("# ViT Chest X-ray Pneumonia Classification") with gr.Row(): with gr.Column(): gr.Markdown( "Classify chest x-ray scans as either having or not having pneumonia" ) input_image = gr.Image(type="pil") classify_button = gr.Button("Classify!") with gr.Column(): output_label = gr.Label(label="Probabilities", num_top_classes=2) with gr.Row(): gr.Examples( "./samples", inputs=input_image, outputs=output_label, cache_examples=True, fn=classify_image, run_on_click=True, ) classify_button.click(fn=classify_image, inputs=input_image, outputs=output_label) demo.launch(debug=True, enable_queue=True)