Spaces:
Runtime error
Runtime error
File size: 7,910 Bytes
625ce4f 1bcb52f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from transformers import RobertaForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification, pipeline
import torch
import nltk
import docx2txt
import pandas as pd
import os
import matplotlib.pyplot as plt
import openpyxl
from openpyxl.styles import Font, Color, PatternFill
from openpyxl.styles.colors import WHITE
import gradio as gr
nltk.download('punkt')
# Load the model and tokenizer
senti_model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment")
senti_tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False)
# Load the model and tokenizer segmentation
seg_tokenizer = AutoTokenizer.from_pretrained("NlpHUST/vi-word-segmentation")
seg_model = AutoModelForTokenClassification.from_pretrained("NlpHUST/vi-word-segmentation")
nlp = pipeline("token-classification", model=seg_model, tokenizer=seg_tokenizer)
# Word segmented
def segmentation(sentences):
segmented_sentences = []
for sentence in sentences:
ner_results = nlp(sentence)
sentence_tok = ""
for e in ner_results:
if "##" in e["word"]:
sentence_tok = sentence_tok + e["word"].replace("##", "")
elif e["entity"] == "I":
sentence_tok = sentence_tok + "_" + e["word"]
else:
sentence_tok = sentence_tok + " " + e["word"]
segmented_sentences.append(sentence_tok.strip())
return segmented_sentences
# File read
def read_file(docx):
try:
text = docx2txt.process(docx)
lines = text.split('\n')
lines = [line.strip() for line in lines]
lines = [line for line in lines if line]
return lines # add this line
except Exception as e:
print(f"Error reading file: {e}")
# Define a function to analyze the sentiment of a text
def analyze(sentence):
input_ids = torch.tensor([senti_tokenizer.encode(sentence)])
with torch.no_grad():
out = senti_model(input_ids)
results = out.logits.softmax(dim=-1).tolist()
return results[0]
def file_analysis(docx):
# Read the file and segment the sentences
sentences = read_file(docx)
segmented_sentences = segmentation(sentences)
# Analyze the sentiment of each sentence
results = []
for sentence in segmented_sentences:
results.append(analyze(sentence))
return results
def generate_pie_chart(df):
# Calculate the average scores
neg_avg = df['Negative'].mean()
pos_avg = df['Positive'].mean()
neu_avg = df['Neutral'].mean()
# Create a new DataFrame with the average scores
avg_df = pd.DataFrame({'Sentiment': ['Negative', 'Positive', 'Neutral'],
'Score': [neg_avg, pos_avg, neu_avg]})
# Set custom colors for the pie chart
colors = ['#BDBDBD', '#9ACD32', '#87CEFA']
# Create a pie chart showing the average scores
plt.pie(avg_df['Score'], labels=avg_df['Sentiment'], colors=colors, autopct='%1.1f%%')
plt.title('Average Scores by Sentiment')
# Save the pie chart as an image file in the static folder
pie_chart_name = 'pie_chart.png'
plt.savefig(pie_chart_name)
plt.close()
return pie_chart_name
def generate_excel_file(df):
# Create a new workbook and worksheet
wb = openpyxl.Workbook()
ws = wb.active
# Add column headers to the worksheet
headers = ['Negative', 'Positive', 'Neutral', 'Text']
for col_num, header in enumerate(headers, 1):
cell = ws.cell(row=1, column=col_num)
cell.value = header
cell.font = Font(bold=True)
# Set up cell formatting for each sentiment
fill_dict = {
'Negative': PatternFill(start_color='BDBDBD', end_color='BDBDBD', fill_type='solid'),
'Positive': PatternFill(start_color='9ACD32', end_color='9ACD32', fill_type='solid'),
'Neutral': PatternFill(start_color='87CEFA', end_color='87CEFA', fill_type='solid')
}
# Loop through each row of the input DataFrame and write data to the worksheet
for row_num, row_data in df.iterrows():
# Calculate the highest score and corresponding sentiment for this row
sentiment_cols = ['Negative', 'Positive', 'Neutral']
scores = [row_data[col] for col in sentiment_cols]
max_score = max(scores)
max_index = scores.index(max_score)
sentiment = sentiment_cols[max_index]
# Write the data to the worksheet
for col_num, col_data in enumerate(row_data, 1):
cell = ws.cell(row=row_num + 2, column=col_num)
cell.value = col_data
if col_num in [1, 2, 3]:
if col_data == max_score:
cell.fill = fill_dict[sentiment]
if col_num == 4:
fill = fill_dict[sentiment]
font_color = WHITE if fill.start_color.rgb == 'BDBDBD' else Color('000000')
cell.fill = fill
cell.font = Font(color=font_color)
if col_data == max_score:
cell.fill = fill_dict[sentiment]
# Save the workbook
excel_file_path = 'result.xlsx'
wb.save(excel_file_path)
return excel_file_path
def process_file(docx):
# Perform analysis on the file
results = file_analysis(docx)
# Create a DataFrame from the results
df = pd.DataFrame(results, columns=['Negative', 'Positive', 'Neutral'])
df['Text'] = read_file(docx)
# Generate the pie chart and excel file
pie_chart_name = generate_pie_chart(df)
excel_file_path = generate_excel_file(df)
return pie_chart_name, excel_file_path
def analyze_file(file, sentence):
if file and sentence:
# Both file and sentence inputs are provided
# Process the uploaded file and generate the output files
pie_chart_name, excel_file_path = process_file(file.name)
# Analyze the sentiment of the input sentence
segmented_sentence = segmentation([sentence])
results = analyze(segmented_sentence[0])
# Get the label names
label_names = ['Negative', 'Positive', 'Neutral']
# Create the output text with labels and scores
output_text = ""
for label, score in zip(label_names, results):
score_formatted = "{:.2f}".format(score)
output_text += f"{label}: {score_formatted}\n"
return excel_file_path, pie_chart_name, output_text
elif sentence:
# Only sentence input is provided
# Analyze the sentiment of the input sentence
segmented_sentence = segmentation([sentence])
results = analyze(segmented_sentence[0])
# Get the label names
label_names = ['Negative', 'Positive', 'Neutral']
# Create the output text with labels and scores
output_text = ""
for label, score in zip(label_names, results):
score_formatted = "{:.2f}".format(score)
output_text += f"{label}: {score_formatted}\n"
return None, None, output_text
elif file:
# Only file input is provided
# Process the uploaded file and generate the output files
pie_chart_name, excel_file_path = process_file(file.name)
# Return the file paths for the pie chart and excel file
return excel_file_path, pie_chart_name, None
inputs = [
gr.inputs.File(label="Chọn Tệp Bạn Muốn Phân Tích"),
gr.inputs.Textbox(label="Nhập Văn Bản")
]
outputs = [
gr.outputs.File(label="Kết Quả Phân Tích Excel"),
gr.outputs.Image(type="filepath", label="Thông Số Phân Tích"),
gr.outputs.Textbox(label="Kết Quả Phân Tích")
]
interface = gr.Interface(
fn=analyze_file,
inputs=inputs,
outputs=outputs,
title="Sentiment Analysis",
allow_flagging="never" # Disable flag button
)
if __name__ == "__main__":
interface.launch()
|