Spaces:
Sleeping
Sleeping
linh-truong
commited on
Commit
•
c1b4f26
1
Parent(s):
c46566d
init
Browse files- .gitignore +3 -0
- app.py +35 -0
- requirements.txt +5 -0
- src/feature_extraction.py +193 -0
- src/model.py +445 -0
- src/ocr.py +79 -0
- utils/config.py +13 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
**test**
|
3 |
+
storage
|
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
#Trick to not init function multitime
|
5 |
+
if "model" not in st.session_state:
|
6 |
+
print("INIT MODEL")
|
7 |
+
from src.model import Model
|
8 |
+
st.session_state.model = Model()
|
9 |
+
print("DONE INIT MODEL")
|
10 |
+
|
11 |
+
st.set_page_config(page_title="VQA", layout="wide")
|
12 |
+
hide_menu_style = """
|
13 |
+
<style>
|
14 |
+
footer {visibility: hidden;}
|
15 |
+
</style>
|
16 |
+
"""
|
17 |
+
st.markdown(hide_menu_style, unsafe_allow_html= True)
|
18 |
+
|
19 |
+
|
20 |
+
image = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png", "webp", ])
|
21 |
+
|
22 |
+
if image:
|
23 |
+
bytes_data = image.getvalue()
|
24 |
+
with open("test.png", "wb") as f:
|
25 |
+
f.write(bytes_data)
|
26 |
+
f.close()
|
27 |
+
st.session_state.image = "test.png"
|
28 |
+
|
29 |
+
if 'image' in st.session_state:
|
30 |
+
st.image(st.session_state.image)
|
31 |
+
question = st.text_input("Question: ")
|
32 |
+
if question:
|
33 |
+
answer = st.session_state.model.inference(st.session_state.image, question)
|
34 |
+
st.write(f"Answer: {answer}")
|
35 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
paddlepaddle>=2.3.1
|
2 |
+
paddleocr==2.6.1.3
|
3 |
+
vietocr>=0.3.8
|
4 |
+
pillow==9.5.0
|
5 |
+
torchvision==0.18.0
|
src/feature_extraction.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from PIL import Image, ImageFont, ImageDraw, ImageTransform
|
5 |
+
from transformers import AutoImageProcessor, ViTModel, AutoTokenizer, T5EncoderModel
|
6 |
+
from utils.config import Config
|
7 |
+
from src.ocr import OCRDetector
|
8 |
+
|
9 |
+
|
10 |
+
class ViT:
|
11 |
+
def __init__(self) -> None:
|
12 |
+
self.processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k")
|
13 |
+
self.model = ViTModel.from_pretrained("google/vit-base-patch16-224-in21k")
|
14 |
+
self.model.to(Config.device)
|
15 |
+
|
16 |
+
def extraction(self, image_url):
|
17 |
+
if image_url.startswith("https://"):
|
18 |
+
images = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
19 |
+
else:
|
20 |
+
images = Image.open(image_url).convert("RGB")
|
21 |
+
|
22 |
+
inputs = self.processor(images, return_tensors="pt").to(Config.device)
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = self.model(**inputs)
|
25 |
+
last_hidden_states = outputs.last_hidden_state
|
26 |
+
attention_mask = torch.ones((last_hidden_states.shape[0], last_hidden_states.shape[1]))
|
27 |
+
|
28 |
+
return last_hidden_states.to(Config.device), attention_mask.to(Config.device)
|
29 |
+
|
30 |
+
def pooling_extraction(self, image):
|
31 |
+
image_inputs = self.processor(image, return_tensors="pt").to(Config.device)
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
image_outputs = self.model(**image_inputs)
|
35 |
+
image_pooler_output = image_outputs.pooler_output
|
36 |
+
image_pooler_output = torch.unsqueeze(image_pooler_output, 0)
|
37 |
+
image_attention_mask = torch.ones((image_pooler_output.shape[0], image_pooler_output.shape[1]))
|
38 |
+
|
39 |
+
return image_pooler_output.to(Config.device), image_attention_mask.to(Config.device)
|
40 |
+
|
41 |
+
class OCR:
|
42 |
+
def __init__(self) -> None:
|
43 |
+
self.ocr_detector = OCRDetector()
|
44 |
+
|
45 |
+
def extraction(self, image_dir):
|
46 |
+
|
47 |
+
ocr_results = self.ocr_detector.text_detector(image_dir)
|
48 |
+
if not ocr_results:
|
49 |
+
print("NOT OCR1")
|
50 |
+
|
51 |
+
return "", [], []
|
52 |
+
|
53 |
+
ocrs = self.post_process(ocr_results)
|
54 |
+
|
55 |
+
if not ocrs:
|
56 |
+
|
57 |
+
return "", [], []
|
58 |
+
|
59 |
+
ocrs.reverse()
|
60 |
+
|
61 |
+
boxes = []
|
62 |
+
texts = []
|
63 |
+
for idx, ocr in enumerate(ocrs):
|
64 |
+
boxes.append(ocr["box"])
|
65 |
+
texts.append(ocr["text"])
|
66 |
+
|
67 |
+
groups_box, groups_text, paragraph_boxes = OCR.group_boxes(boxes, texts)
|
68 |
+
for temp in groups_text:
|
69 |
+
print("OCR: ", temp)
|
70 |
+
|
71 |
+
texts = [" ".join(group_text) for group_text in groups_text]
|
72 |
+
ocr_content = "<extra_id_0>".join(texts)
|
73 |
+
ocr_content = ocr_content.lower()
|
74 |
+
ocr_content = " ".join(ocr_content.split())
|
75 |
+
ocr_content = "<extra_id_0>" + ocr_content
|
76 |
+
|
77 |
+
|
78 |
+
return ocr_content, groups_box, paragraph_boxes
|
79 |
+
|
80 |
+
def post_process(self,ocr_results):
|
81 |
+
ocrs = []
|
82 |
+
for result in ocr_results:
|
83 |
+
text = result["text"]
|
84 |
+
# if len(text) <=2:
|
85 |
+
# continue
|
86 |
+
# if len(set(text.replace(" ", ""))) <=2:
|
87 |
+
# continue
|
88 |
+
box = result["box"]
|
89 |
+
|
90 |
+
# (x1, y1), (x2, y2), (x3, y3), (x4, y4) = box
|
91 |
+
# w = x2 - x1
|
92 |
+
# h = y4 - y1
|
93 |
+
# if h > w:
|
94 |
+
# continue
|
95 |
+
|
96 |
+
# if w*h < 300:
|
97 |
+
# continue
|
98 |
+
|
99 |
+
ocrs.append(
|
100 |
+
{"text": text.lower(),
|
101 |
+
"box": box}
|
102 |
+
)
|
103 |
+
return ocrs
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def cut_image_polygon(image, box):
|
107 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = box
|
108 |
+
w = x2 - x1
|
109 |
+
h = y4 - y1
|
110 |
+
scl = h//7
|
111 |
+
new_box = [max(x1-scl,0), max(y1 - scl, 0)], [x2+scl, y2-scl], [x3+scl, y3+scl], [x4-scl, y4+scl]
|
112 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = new_box
|
113 |
+
# Define 8-tuple with x,y coordinates of top-left, bottom-left, bottom-right and top-right corners and apply
|
114 |
+
transform = [x1, y1, x4, y4, x3, y3, x2, y2]
|
115 |
+
result = image.transform((w,h), ImageTransform.QuadTransform(transform))
|
116 |
+
return result
|
117 |
+
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def check_point_in_rectangle(box, point, padding_devide):
|
121 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = box
|
122 |
+
x_min = min(x1, x4)
|
123 |
+
x_max = max(x2, x3)
|
124 |
+
|
125 |
+
padding = (x_max-x_min)//padding_devide
|
126 |
+
x_min = x_min - padding
|
127 |
+
x_max = x_max + padding
|
128 |
+
|
129 |
+
y_min = min(y1, y2)
|
130 |
+
y_max = max(y3, y4)
|
131 |
+
|
132 |
+
y_min = y_min - padding
|
133 |
+
y_max = y_max + padding
|
134 |
+
|
135 |
+
x, y = point
|
136 |
+
|
137 |
+
if x >= x_min and x <= x_max and y >= y_min and y <= y_max:
|
138 |
+
return True
|
139 |
+
|
140 |
+
return False
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def check_rectangle_overlap(rec1, rec2, padding_devide):
|
144 |
+
for point in rec1:
|
145 |
+
if OCR.check_point_in_rectangle(rec2, point, padding_devide):
|
146 |
+
return True
|
147 |
+
|
148 |
+
for point in rec2:
|
149 |
+
if OCR.check_point_in_rectangle(rec1, point, padding_devide):
|
150 |
+
return True
|
151 |
+
|
152 |
+
return False
|
153 |
+
|
154 |
+
@staticmethod
|
155 |
+
def group_boxes(boxes, texts):
|
156 |
+
groups = []
|
157 |
+
groups_text = []
|
158 |
+
paragraph_boxes = []
|
159 |
+
processed = []
|
160 |
+
boxes_cp = boxes.copy()
|
161 |
+
for i, (box, text) in enumerate(zip(boxes_cp, texts)):
|
162 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = box
|
163 |
+
|
164 |
+
if i not in processed:
|
165 |
+
processed.append(i)
|
166 |
+
else:
|
167 |
+
continue
|
168 |
+
|
169 |
+
groups.append([box])
|
170 |
+
groups_text.append([text])
|
171 |
+
for j, (box2, text2) in enumerate(zip(boxes_cp[i+1:], texts[i+1:])):
|
172 |
+
if j+i+1 in processed:
|
173 |
+
continue
|
174 |
+
padding_devide = len(groups[-1])*4
|
175 |
+
is_overlap = OCR.check_rectangle_overlap(box, box2, padding_devide)
|
176 |
+
if is_overlap:
|
177 |
+
(xx1, yy1), (xx2, yy2), (xx3, yy3), (xx4, yy4) = box2
|
178 |
+
processed.append(j+i+1)
|
179 |
+
groups[-1].append(box2)
|
180 |
+
groups_text[-1].append(text2)
|
181 |
+
new_x1 = min(x1, xx1)
|
182 |
+
new_y1 = min(y1, yy1)
|
183 |
+
new_x2 = max(x2, xx2)
|
184 |
+
new_y2 = min(y2, yy2)
|
185 |
+
new_x3 = max(x3, xx3)
|
186 |
+
new_y3 = max(y3, yy3)
|
187 |
+
new_x4 = min(x4, xx4)
|
188 |
+
new_y4 = max(y4, yy4)
|
189 |
+
|
190 |
+
box = [(new_x1, new_y1), (new_x2, new_y2), (new_x3, new_y3), (new_x4, new_y4)]
|
191 |
+
|
192 |
+
paragraph_boxes.append(box)
|
193 |
+
return groups, groups_text, paragraph_boxes
|
src/model.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import transformers
|
2 |
+
from transformers.models.t5.modeling_t5 import *
|
3 |
+
from transformers.models.t5.modeling_t5 import T5Stack
|
4 |
+
import os
|
5 |
+
import gdown
|
6 |
+
import torch
|
7 |
+
from typing import *
|
8 |
+
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
9 |
+
from utils.config import Config
|
10 |
+
from src.feature_extraction import ViT, OCR
|
11 |
+
|
12 |
+
_CONFIG_FOR_DOC = "T5Config"
|
13 |
+
_CHECKPOINT_FOR_DOC = "google-t5/t5-small"
|
14 |
+
|
15 |
+
class CustomT5Stack(T5Stack):
|
16 |
+
|
17 |
+
def forward(
|
18 |
+
self,
|
19 |
+
input_ids=None,
|
20 |
+
attention_mask=None,
|
21 |
+
encoder_hidden_states=None,
|
22 |
+
encoder_attention_mask=None,
|
23 |
+
inputs_embeds=None,
|
24 |
+
head_mask=None,
|
25 |
+
cross_attn_head_mask=None,
|
26 |
+
past_key_values=None,
|
27 |
+
use_cache=None,
|
28 |
+
output_attentions=None,
|
29 |
+
output_hidden_states=None,
|
30 |
+
return_dict=None,
|
31 |
+
images_embeds=None,
|
32 |
+
):
|
33 |
+
# Model parallel
|
34 |
+
if self.model_parallel:
|
35 |
+
torch.cuda.set_device(self.first_device)
|
36 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
37 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
38 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
39 |
+
output_hidden_states = (
|
40 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
41 |
+
)
|
42 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
43 |
+
|
44 |
+
if input_ids is not None and inputs_embeds is not None:
|
45 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
46 |
+
raise ValueError(
|
47 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
48 |
+
)
|
49 |
+
elif input_ids is not None:
|
50 |
+
input_shape = input_ids.size()
|
51 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
52 |
+
elif inputs_embeds is not None:
|
53 |
+
input_shape = inputs_embeds.size()[:-1]
|
54 |
+
else:
|
55 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
56 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
57 |
+
|
58 |
+
if inputs_embeds is None:
|
59 |
+
if self.embed_tokens is None:
|
60 |
+
raise ValueError("You have to initialize the model with valid token embeddings")
|
61 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
62 |
+
if not self.is_decoder and images_embeds is not None:
|
63 |
+
inputs_embeds = torch.concat([inputs_embeds, images_embeds], dim=1)
|
64 |
+
input_shape = inputs_embeds.size()[:-1]
|
65 |
+
|
66 |
+
batch_size, seq_length = input_shape
|
67 |
+
|
68 |
+
# required mask seq length can be calculated via length of past
|
69 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
70 |
+
|
71 |
+
if use_cache is True:
|
72 |
+
if not self.is_decoder:
|
73 |
+
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
|
74 |
+
|
75 |
+
# initialize past_key_values with `None` if past does not exist
|
76 |
+
if past_key_values is None:
|
77 |
+
past_key_values = [None] * len(self.block)
|
78 |
+
|
79 |
+
if attention_mask is None:
|
80 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
81 |
+
|
82 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
83 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
84 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
85 |
+
|
86 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
87 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
88 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
89 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
90 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
91 |
+
if encoder_attention_mask is None:
|
92 |
+
encoder_attention_mask = torch.ones(
|
93 |
+
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
|
94 |
+
)
|
95 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
96 |
+
else:
|
97 |
+
encoder_extended_attention_mask = None
|
98 |
+
|
99 |
+
if self.gradient_checkpointing and self.training:
|
100 |
+
if use_cache:
|
101 |
+
logger.warning_once(
|
102 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
103 |
+
)
|
104 |
+
use_cache = False
|
105 |
+
|
106 |
+
# Prepare head mask if needed
|
107 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
108 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
109 |
+
present_key_value_states = () if use_cache else None
|
110 |
+
all_hidden_states = () if output_hidden_states else None
|
111 |
+
all_attentions = () if output_attentions else None
|
112 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
113 |
+
position_bias = None
|
114 |
+
encoder_decoder_position_bias = None
|
115 |
+
|
116 |
+
hidden_states = self.dropout(inputs_embeds)
|
117 |
+
|
118 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
119 |
+
layer_head_mask = head_mask[i]
|
120 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
121 |
+
# Model parallel
|
122 |
+
if self.model_parallel:
|
123 |
+
torch.cuda.set_device(hidden_states.device)
|
124 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
125 |
+
if attention_mask is not None:
|
126 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
127 |
+
if position_bias is not None:
|
128 |
+
position_bias = position_bias.to(hidden_states.device)
|
129 |
+
if encoder_hidden_states is not None:
|
130 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
131 |
+
if encoder_extended_attention_mask is not None:
|
132 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
133 |
+
if encoder_decoder_position_bias is not None:
|
134 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
135 |
+
if layer_head_mask is not None:
|
136 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
137 |
+
if cross_attn_layer_head_mask is not None:
|
138 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
139 |
+
if output_hidden_states:
|
140 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
141 |
+
|
142 |
+
if self.gradient_checkpointing and self.training:
|
143 |
+
layer_outputs = self._gradient_checkpointing_func(
|
144 |
+
layer_module.forward,
|
145 |
+
hidden_states,
|
146 |
+
extended_attention_mask,
|
147 |
+
position_bias,
|
148 |
+
encoder_hidden_states,
|
149 |
+
encoder_extended_attention_mask,
|
150 |
+
encoder_decoder_position_bias,
|
151 |
+
layer_head_mask,
|
152 |
+
cross_attn_layer_head_mask,
|
153 |
+
None, # past_key_value is always None with gradient checkpointing
|
154 |
+
use_cache,
|
155 |
+
output_attentions,
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
layer_outputs = layer_module(
|
159 |
+
hidden_states,
|
160 |
+
attention_mask=extended_attention_mask,
|
161 |
+
position_bias=position_bias,
|
162 |
+
encoder_hidden_states=encoder_hidden_states,
|
163 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
164 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
165 |
+
layer_head_mask=layer_head_mask,
|
166 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
167 |
+
past_key_value=past_key_value,
|
168 |
+
use_cache=use_cache,
|
169 |
+
output_attentions=output_attentions,
|
170 |
+
)
|
171 |
+
|
172 |
+
# layer_outputs is a tuple with:
|
173 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
174 |
+
if use_cache is False:
|
175 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
176 |
+
|
177 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
178 |
+
|
179 |
+
# We share the position biases between the layers - the first layer store them
|
180 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
181 |
+
# (cross-attention position bias), (cross-attention weights)
|
182 |
+
position_bias = layer_outputs[2]
|
183 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
184 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
185 |
+
# append next layer key value states
|
186 |
+
if use_cache:
|
187 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
188 |
+
|
189 |
+
if output_attentions:
|
190 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
191 |
+
if self.is_decoder:
|
192 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
193 |
+
|
194 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
195 |
+
if self.model_parallel:
|
196 |
+
for k, v in self.device_map.items():
|
197 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
198 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
199 |
+
|
200 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
201 |
+
hidden_states = self.dropout(hidden_states)
|
202 |
+
|
203 |
+
# Add last layer
|
204 |
+
if output_hidden_states:
|
205 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
206 |
+
|
207 |
+
if not return_dict:
|
208 |
+
return tuple(
|
209 |
+
v
|
210 |
+
for v in [
|
211 |
+
hidden_states,
|
212 |
+
present_key_value_states,
|
213 |
+
all_hidden_states,
|
214 |
+
all_attentions,
|
215 |
+
all_cross_attentions,
|
216 |
+
]
|
217 |
+
if v is not None
|
218 |
+
)
|
219 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
220 |
+
last_hidden_state=hidden_states,
|
221 |
+
past_key_values=present_key_value_states,
|
222 |
+
hidden_states=all_hidden_states,
|
223 |
+
attentions=all_attentions,
|
224 |
+
cross_attentions=all_cross_attentions,
|
225 |
+
)
|
226 |
+
|
227 |
+
|
228 |
+
class CustomT5ForConditionalGeneration(T5ForConditionalGeneration):
|
229 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
230 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
231 |
+
def forward(
|
232 |
+
self,
|
233 |
+
input_ids: Optional[torch.LongTensor] = None,
|
234 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
235 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
236 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
237 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
238 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
239 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
240 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
241 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
242 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
243 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
244 |
+
labels: Optional[torch.LongTensor] = None,
|
245 |
+
use_cache: Optional[bool] = None,
|
246 |
+
output_attentions: Optional[bool] = None,
|
247 |
+
output_hidden_states: Optional[bool] = None,
|
248 |
+
return_dict: Optional[bool] = None,
|
249 |
+
images_embeds: Optional[torch.FloatTensor] = None,
|
250 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
251 |
+
r"""
|
252 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
253 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
254 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
255 |
+
labels in `[0, ..., config.vocab_size]`
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
|
259 |
+
Examples:
|
260 |
+
|
261 |
+
```python
|
262 |
+
>>> from transformers import AutoTokenizer, T5ForConditionalGeneration
|
263 |
+
|
264 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
|
265 |
+
>>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
|
266 |
+
|
267 |
+
>>> # training
|
268 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
269 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
270 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
271 |
+
>>> loss = outputs.loss
|
272 |
+
>>> logits = outputs.logits
|
273 |
+
|
274 |
+
>>> # inference
|
275 |
+
>>> input_ids = tokenizer(
|
276 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
277 |
+
... ).input_ids # Batch size 1
|
278 |
+
>>> outputs = model.generate(input_ids)
|
279 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
280 |
+
>>> # studies have shown that owning a dog is good for you.
|
281 |
+
```"""
|
282 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
283 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
284 |
+
|
285 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
286 |
+
if head_mask is not None and decoder_head_mask is None:
|
287 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
288 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
289 |
+
decoder_head_mask = head_mask
|
290 |
+
|
291 |
+
# Encode if needed (training, first prediction pass)
|
292 |
+
if encoder_outputs is None:
|
293 |
+
# Convert encoder inputs in embeddings if needed
|
294 |
+
encoder_outputs = self.encoder(
|
295 |
+
input_ids=input_ids,
|
296 |
+
attention_mask=attention_mask,
|
297 |
+
inputs_embeds=inputs_embeds,
|
298 |
+
head_mask=head_mask,
|
299 |
+
output_attentions=output_attentions,
|
300 |
+
output_hidden_states=output_hidden_states,
|
301 |
+
return_dict=return_dict,
|
302 |
+
images_embeds=images_embeds
|
303 |
+
)
|
304 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
305 |
+
encoder_outputs = BaseModelOutput(
|
306 |
+
last_hidden_state=encoder_outputs[0],
|
307 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
308 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
309 |
+
)
|
310 |
+
|
311 |
+
hidden_states = encoder_outputs[0]
|
312 |
+
|
313 |
+
if self.model_parallel:
|
314 |
+
torch.cuda.set_device(self.decoder.first_device)
|
315 |
+
|
316 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
317 |
+
# get decoder inputs from shifting lm labels to the right
|
318 |
+
decoder_input_ids = self._shift_right(labels)
|
319 |
+
|
320 |
+
# Set device for model parallelism
|
321 |
+
if self.model_parallel:
|
322 |
+
torch.cuda.set_device(self.decoder.first_device)
|
323 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
324 |
+
if decoder_input_ids is not None:
|
325 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
326 |
+
if attention_mask is not None:
|
327 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
328 |
+
if decoder_attention_mask is not None:
|
329 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
330 |
+
|
331 |
+
# Decode
|
332 |
+
decoder_outputs = self.decoder(
|
333 |
+
input_ids=decoder_input_ids,
|
334 |
+
attention_mask=decoder_attention_mask,
|
335 |
+
inputs_embeds=decoder_inputs_embeds,
|
336 |
+
past_key_values=past_key_values,
|
337 |
+
encoder_hidden_states=hidden_states,
|
338 |
+
encoder_attention_mask=attention_mask,
|
339 |
+
head_mask=decoder_head_mask,
|
340 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
341 |
+
use_cache=use_cache,
|
342 |
+
output_attentions=output_attentions,
|
343 |
+
output_hidden_states=output_hidden_states,
|
344 |
+
return_dict=return_dict,
|
345 |
+
)
|
346 |
+
|
347 |
+
sequence_output = decoder_outputs[0]
|
348 |
+
|
349 |
+
# Set device for model parallelism
|
350 |
+
if self.model_parallel:
|
351 |
+
torch.cuda.set_device(self.encoder.first_device)
|
352 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
353 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
354 |
+
|
355 |
+
if self.config.tie_word_embeddings:
|
356 |
+
# Rescale output before projecting on vocab
|
357 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
358 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
359 |
+
|
360 |
+
lm_logits = self.lm_head(sequence_output)
|
361 |
+
|
362 |
+
loss = None
|
363 |
+
if labels is not None:
|
364 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
365 |
+
# move labels to correct device to enable PP
|
366 |
+
labels = labels.to(lm_logits.device)
|
367 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
368 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
369 |
+
|
370 |
+
if not return_dict:
|
371 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
372 |
+
return ((loss,) + output) if loss is not None else output
|
373 |
+
|
374 |
+
return Seq2SeqLMOutput(
|
375 |
+
loss=loss,
|
376 |
+
logits=lm_logits,
|
377 |
+
past_key_values=decoder_outputs.past_key_values,
|
378 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
379 |
+
decoder_attentions=decoder_outputs.attentions,
|
380 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
381 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
382 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
383 |
+
encoder_attentions=encoder_outputs.attentions,
|
384 |
+
)
|
385 |
+
|
386 |
+
transformers.models.t5.modeling_t5.T5Stack = CustomT5Stack
|
387 |
+
transformers.models.t5.modeling_t5.T5ForConditionalGeneration = CustomT5ForConditionalGeneration
|
388 |
+
transformers.T5ForConditionalGeneration = CustomT5ForConditionalGeneration
|
389 |
+
|
390 |
+
|
391 |
+
class Model:
|
392 |
+
def __init__(self) -> None:
|
393 |
+
os.makedirs("storage", exist_ok=True)
|
394 |
+
|
395 |
+
if not os.path.exists("storage/vlsp_transfomer_vietocr.pth"):
|
396 |
+
print("DOWNLOADING model")
|
397 |
+
gdown.download(Config.model_url, output="storage/vlsp_transfomer_vietocr.pth")
|
398 |
+
self.vit5_tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
|
399 |
+
self.model = T5ForConditionalGeneration.from_pretrained("truong-xuan-linh/VQA-vit5",
|
400 |
+
revision=Config.revision,
|
401 |
+
output_attentions=True)
|
402 |
+
self.model.to(Config.device)
|
403 |
+
|
404 |
+
self.vit = ViT()
|
405 |
+
self.ocr = OCR()
|
406 |
+
|
407 |
+
def get_inputs(self, image_dir: str, question: str):
|
408 |
+
#VIT
|
409 |
+
image_feature, image_mask = self.vit.extraction(image_dir)
|
410 |
+
|
411 |
+
ocr_content, groups_box, paragraph_boxes = self.ocr.extraction(image_dir)
|
412 |
+
print("Input: ", question + " " + ocr_content)
|
413 |
+
#VIT5
|
414 |
+
input_ = self.vit5_tokenizer(question + " " + ocr_content,
|
415 |
+
padding="max_length",
|
416 |
+
truncation=True,
|
417 |
+
max_length=Config.question_maxlen + Config.ocr_maxlen,
|
418 |
+
return_tensors="pt")
|
419 |
+
|
420 |
+
input_ids = input_.input_ids
|
421 |
+
attention_mask = input_.attention_mask
|
422 |
+
mask = torch.cat((attention_mask, image_mask), 1)
|
423 |
+
return {
|
424 |
+
"input_ids": input_ids,
|
425 |
+
"attention_mask": mask,
|
426 |
+
"images_embeds": image_feature,
|
427 |
+
}
|
428 |
+
|
429 |
+
def inference(self, image_dir: str, question: str):
|
430 |
+
inputs = self.get_inputs(image_dir, question)
|
431 |
+
with torch.no_grad():
|
432 |
+
input_ids = inputs["input_ids"]
|
433 |
+
attention_mask = inputs["attention_mask"]
|
434 |
+
images_embeds = inputs["images_embeds"]
|
435 |
+
generated_ids = self.model.generate(
|
436 |
+
input_ids=input_ids, \
|
437 |
+
attention_mask=attention_mask, \
|
438 |
+
images_embeds=images_embeds, \
|
439 |
+
num_beams=2,
|
440 |
+
max_length=Config.answer_maxlen
|
441 |
+
)
|
442 |
+
|
443 |
+
pred_answer = self.vit5_tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
444 |
+
|
445 |
+
return pred_answer
|
src/ocr.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from paddleocr import PaddleOCR
|
2 |
+
from vietocr.tool.config import Cfg
|
3 |
+
from vietocr.tool.predictor import Predictor
|
4 |
+
from utils.config import Config
|
5 |
+
import requests
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image, ImageTransform
|
8 |
+
|
9 |
+
class OCRDetector:
|
10 |
+
def __init__(self) -> None:
|
11 |
+
self.paddle_ocr = PaddleOCR(lang='en',
|
12 |
+
use_angle_cls=False,
|
13 |
+
use_gpu=True if Config.device == "cpu" else False,
|
14 |
+
show_log=False )
|
15 |
+
# config['weights'] = './weights/transformerocr.pth'
|
16 |
+
|
17 |
+
vietocr_config = Cfg.load_config_from_name('vgg_transformer')
|
18 |
+
vietocr_config['weights'] = Config.ocr_path
|
19 |
+
vietocr_config['cnn']['pretrained']=False
|
20 |
+
vietocr_config['device'] = Config.device
|
21 |
+
vietocr_config['predictor']['beamsearch']=False
|
22 |
+
self.viet_ocr = Predictor(vietocr_config)
|
23 |
+
|
24 |
+
def find_box(self, image):
|
25 |
+
'''Xác định box dựa vào mô hình paddle_ocr'''
|
26 |
+
result = self.paddle_ocr.ocr(image, cls = False, rec=False)
|
27 |
+
result = result[0]
|
28 |
+
# Extracting detected components
|
29 |
+
boxes = result #[res[0] for res in result]
|
30 |
+
boxes = np.array(boxes).astype(int)
|
31 |
+
|
32 |
+
# scores = [res[1][1] for res in result]
|
33 |
+
return boxes
|
34 |
+
|
35 |
+
def cut_image_polygon(self, image, box):
|
36 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = box
|
37 |
+
w = x2 - x1
|
38 |
+
h = y4 - y1
|
39 |
+
scl = h//7
|
40 |
+
new_box = [max(x1-scl,0), max(y1 - scl, 0)], [x2+scl, y2-scl], [x3+scl, y3+scl], [x4-scl, y4+scl]
|
41 |
+
(x1, y1), (x2, y2), (x3, y3), (x4, y4) = new_box
|
42 |
+
# Define 8-tuple with x,y coordinates of top-left, bottom-left, bottom-right and top-right corners and apply
|
43 |
+
transform = [x1, y1, x4, y4, x3, y3, x2, y2]
|
44 |
+
result = image.transform((w,h), ImageTransform.QuadTransform(transform))
|
45 |
+
return result
|
46 |
+
|
47 |
+
def vietnamese_text(self, boxes, image):
|
48 |
+
'''Xác định text dựa vào mô hình viet_ocr'''
|
49 |
+
results = []
|
50 |
+
for box in boxes:
|
51 |
+
try:
|
52 |
+
cut_image = self.cut_image_polygon(image, box)
|
53 |
+
# cut_image = Image.fromarray(np.uint8(cut_image))
|
54 |
+
text, score = self.viet_ocr.predict(cut_image, return_prob=True)
|
55 |
+
if score > Config.vietocr_threshold:
|
56 |
+
results.append({"text": text,
|
57 |
+
"score": score,
|
58 |
+
"box": box})
|
59 |
+
except:
|
60 |
+
continue
|
61 |
+
return results
|
62 |
+
|
63 |
+
#Merge
|
64 |
+
def text_detector(self, image_path):
|
65 |
+
if image_path.startswith("https://"):
|
66 |
+
image = Image.open(requests.get(image_path, stream=True).raw).convert("RGB")
|
67 |
+
else:
|
68 |
+
image = Image.open(image_path).convert("RGB")
|
69 |
+
# np_image = np.array(image)
|
70 |
+
|
71 |
+
boxes = self.find_box(image_path)
|
72 |
+
if not boxes.any():
|
73 |
+
return None
|
74 |
+
|
75 |
+
results = self.vietnamese_text(boxes, image)
|
76 |
+
if results != []:
|
77 |
+
return results
|
78 |
+
else:
|
79 |
+
return None
|
utils/config.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Config:
|
2 |
+
device = "cpu"
|
3 |
+
model_url = "https://drive.google.com/uc?id=1WqyPOxgTj9vdnEQl_TJwr_U_hdQeI1iz"
|
4 |
+
ocr_path = "storage/vlsp_transfomer_vietocr.pth"
|
5 |
+
model_path = "storage/vit_base_vit5_base_v2_1.3197_0.4732_3.5212.pt"
|
6 |
+
question_maxlen = 32
|
7 |
+
vietocr_threshold = 0.5
|
8 |
+
answer_maxlen = 56
|
9 |
+
ocr_maxlen = 128
|
10 |
+
ocr_maxobj = 10000
|
11 |
+
num_ocr = 32
|
12 |
+
num_beams = 3
|
13 |
+
revision = "version_2_with_extra_id_0"
|