truongghieu
commited on
Commit
•
cf0cbe3
1
Parent(s):
9c2b4b1
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig,B
|
|
5 |
import torch
|
6 |
|
7 |
Medical_finetunned_model = "truongghieu/deci-finetuned_Prj2"
|
8 |
-
question_text = "This is a question"
|
9 |
answer_text = "This is an answer"
|
10 |
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -19,17 +18,24 @@ else:
|
|
19 |
model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
|
20 |
|
21 |
|
22 |
-
generation_config = GenerationConfig(
|
23 |
-
penalty_alpha=0.6,
|
24 |
-
do_sample=True,
|
25 |
-
top_k=3,
|
26 |
-
temperature=0.5,
|
27 |
-
repetition_penalty=1.2,
|
28 |
-
max_new_tokens=50,
|
29 |
-
pad_token_id=tokenizer.eos_token_id
|
30 |
-
)
|
31 |
|
32 |
-
def generate_text(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
input_text = f'###Human: \"{text}\"'
|
34 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
35 |
output_ids = model.generate(input_ids, generation_config=generation_config)
|
@@ -45,8 +51,7 @@ def recognize_speech(audio_data):
|
|
45 |
recognizer = sr.Recognizer()
|
46 |
try:
|
47 |
text = recognizer.recognize_google(audio_data)
|
48 |
-
|
49 |
-
return f"Recognized Speech: {text}"
|
50 |
|
51 |
except sr.UnknownValueError:
|
52 |
return "Speech Recognition could not understand audio."
|
@@ -65,13 +70,22 @@ def recognize_speech(audio_data):
|
|
65 |
|
66 |
with gr.Blocks() as demo:
|
67 |
with gr.Row():
|
68 |
-
gr.
|
69 |
inp = gr.Audio(type="numpy")
|
70 |
out_text_predict = gr.Textbox(label="Recognized Speech")
|
71 |
-
button = gr.Button("Recognize Speech")
|
72 |
button.click(recognize_speech, inp, out_text_predict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
with gr.Row():
|
74 |
out_answer = gr.Textbox(label="Answer")
|
75 |
-
button_answer = gr.Button("
|
76 |
-
button_answer.click(generate_text, out_text_predict, out_answer)
|
77 |
demo.launch()
|
|
|
5 |
import torch
|
6 |
|
7 |
Medical_finetunned_model = "truongghieu/deci-finetuned_Prj2"
|
|
|
8 |
answer_text = "This is an answer"
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
18 |
model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def generate_text(*args):
|
23 |
+
if args[0] == "":
|
24 |
+
return "Please input text"
|
25 |
+
args[1] = 0.6 if args[1] == 0 else args[1]
|
26 |
+
args[3] = 5 if args[3] == 0 else args[3]
|
27 |
+
args[4] = 0.5 if args[4] == 0 else args[4]
|
28 |
+
args[5] = 50 if args[5] == 0 else args[5]
|
29 |
+
|
30 |
+
generation_config = GenerationConfig(
|
31 |
+
penalty_alpha=args[1],
|
32 |
+
do_sample=args[2],
|
33 |
+
top_k=args[3],
|
34 |
+
temperature=args[4],
|
35 |
+
repetition_penalty=args[5],
|
36 |
+
max_new_tokens=args[6],
|
37 |
+
pad_token_id=tokenizer.eos_token_id
|
38 |
+
)
|
39 |
input_text = f'###Human: \"{text}\"'
|
40 |
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
41 |
output_ids = model.generate(input_ids, generation_config=generation_config)
|
|
|
51 |
recognizer = sr.Recognizer()
|
52 |
try:
|
53 |
text = recognizer.recognize_google(audio_data)
|
54 |
+
return text
|
|
|
55 |
|
56 |
except sr.UnknownValueError:
|
57 |
return "Speech Recognition could not understand audio."
|
|
|
70 |
|
71 |
with gr.Blocks() as demo:
|
72 |
with gr.Row():
|
73 |
+
inp_text = gr.Textbox(label="Input Text")
|
74 |
inp = gr.Audio(type="numpy")
|
75 |
out_text_predict = gr.Textbox(label="Recognized Speech")
|
76 |
+
button = gr.Button("Recognize Speech" , size="sm")
|
77 |
button.click(recognize_speech, inp, out_text_predict)
|
78 |
+
with gr.Row():
|
79 |
+
with gr.Row():
|
80 |
+
penalty_alpha_slider = gr.Slider(minimum=0, maximum=1, step=0.1, label="penalty alpha")
|
81 |
+
do_sample_checkbox = gr.Checkbox(label="do sample")
|
82 |
+
top_k_slider = gr.Slider(minimum=0, maximum=10, step=1, label="top k")
|
83 |
+
with gr.Row():
|
84 |
+
temperature_slider = gr.Slider(minimum=0, maximum=1, step=0.1, label="temperature")
|
85 |
+
repetition_penalty_slider = gr.Slider(minimum=0, maximum=2, step=0.1, label="repetition penalty")
|
86 |
+
max_new_tokens_slider = gr.Slider(minimum=0, maximum=100, step=1, label="max new tokens")
|
87 |
with gr.Row():
|
88 |
out_answer = gr.Textbox(label="Answer")
|
89 |
+
button_answer = gr.Button("Answer")
|
90 |
+
button_answer.click(generate_text, [out_text_predict, penalty_alpha_slider, do_sample_checkbox, top_k_slider, temperature_slider, repetition_penalty_slider, max_new_tokens_slider], out_answer)
|
91 |
demo.launch()
|