truongghieu commited on
Commit
3ee1657
1 Parent(s): 4db03af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -6,14 +6,17 @@ import torch
6
  # Check if a GPU is available
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
 
9
  bnb_config = BitsAndBytesConfig(
10
  load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", bnb_4bit_use_double_quant=True
11
  )
12
 
13
 
14
  tokenizer = AutoTokenizer.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
15
- model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True, quantization_config=bnb_config)
 
16
 
 
17
  # Move the model to the GPU if available
18
 
19
  generation_config = GenerationConfig(
@@ -31,7 +34,7 @@ generation_config = GenerationConfig(
31
  # Define a function that takes a text input and generates a text output
32
  def generate_text(text):
33
  input_text = text
34
- input_ids = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
35
  output_ids = model.generate(input_ids, generation_config=generation_config)
36
  output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
37
  return output_text
 
6
  # Check if a GPU is available
7
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
 
9
+ # Just for GPU
10
  bnb_config = BitsAndBytesConfig(
11
  load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", bnb_4bit_use_double_quant=True
12
  )
13
 
14
 
15
  tokenizer = AutoTokenizer.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
16
+ # Load model in this way if use GPU
17
+ # model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True, quantization_config=bnb_config)
18
 
19
+ model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
20
  # Move the model to the GPU if available
21
 
22
  generation_config = GenerationConfig(
 
34
  # Define a function that takes a text input and generates a text output
35
  def generate_text(text):
36
  input_text = text
37
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
38
  output_ids = model.generate(input_ids, generation_config=generation_config)
39
  output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
40
  return output_text