import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import LlamaForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import os
from threading import Thread
from polyglot.detect import Detector
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "LLaMAX/LLaMAX3-8B-Alpaca"
TITLE = "
LLaMAX3-8B-Translation
"
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = LlamaForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def lang_detector(text):
min_chars = 5
if len(text) < min_chars:
return "Input text too short"
try:
detector = Detector(text).language
lang_info = str(detector)
code = re.search(r"name: (\w+)", lang_info).group(1)
return code
except Exception as e:
return f"ERROR:{str(e)}"
def Prompt_template(query, src_language, trg_language):
instruction = f'Translate the following sentences from {src_language} to {trg_language}.'
prompt = (
'Below is an instruction that describes a task, paired with an input that provides further context. '
'Write a response that appropriately completes the request.\n'
f'### Instruction:\n{instruction}\n'
f'### Input:\n{query}\n### Response:'
)
return prompt
# Unfinished
def chunk_text():
pass
@spaces.GPU()
def translate(
source_text: str,
source_lang: str,
target_lang: str,
max_chunk: int,
max_length: int,
temperature: float):
print(f'Text is - {source_text}')
prompt = Prompt_template(source_text, source_lang, target_lang)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.to(model.device)
streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_length=max_length,
do_sample=True,
temperature=temperature,
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
CSS = """
h1 {
text-align: center;
display: block;
height: 10vh;
align-content: center;
}
footer {
visibility: hidden;
}
"""
chatbot = gr.Chatbot(height=600)
with gr.Blocks(theme="soft", css=CSS) as demo:
gr.Markdown(TITLE)
with gr.Row():
with gr.Column(scale=1):
source_lang = gr.Textbox(
label="Source Lang(Auto-Detect)",
value="English",
)
target_lang = gr.Textbox(
label="Target Lang",
value="Spanish",
)
max_chunk = gr.Slider(
label="Max tokens Per Chunk",
minimum=512,
maximum=2046,
value=1000,
step=8,
)
max_length = gr.Slider(
label="Context Window",
minimum=512,
maximum=8192,
value=4096,
step=8,
)
temperature = gr.Slider(
label="Temperature",
minimum=0,
maximum=1,
value=0.3,
step=0.1,
)
with gr.Column(scale=4):
gr.Markdown(DESCRIPTION)
source_text = gr.Textbox(
label="Source Text",
value="How we live is so different from how we ought to live that he who studies "+\
"what ought to be done rather than what is done will learn the way to his downfall "+\
"rather than to his preservation.",
lines=10,
)
output_text = gr.Textbox(
label="Output Text",
lines=10,
)
with gr.Row():
submit = gr.Button(value="Submit")
clear = gr.ClearButton([source_text, output_text])
source_text.change(lang_detector, source_text, source_lang)
submit.click(fn=huanik, inputs=[source_lang, target_lang, source_text, max_chunk, max_length, temperature], outputs=[output_text])
if __name__ == "__main__":
demo.launch()