perflow-triposr / src /laion_bytenas.py
hanshu.yan
add app.py
2ec72fb
import os
import json
import random
from tqdm import tqdm
import numpy as np
from PIL import Image, ImageStat
import torch
from torch.utils.data import Dataset, DataLoader, IterableDataset, get_worker_info
from torchvision import transforms as T
### >>>>>>>> >>>>>>>> text related >>>>>>>> >>>>>>>> ###
class TokenizerWrapper():
def __init__(self, tokenizer, is_train, proportion_empty_prompts, use_generic_prompts=False):
self.tokenizer = tokenizer
self.is_train = is_train
self.proportion_empty_prompts = proportion_empty_prompts
self.use_generic_prompts = use_generic_prompts
def __call__(self, prompts):
if isinstance(prompts, str):
prompts = [prompts]
captions = []
for caption in prompts:
if random.random() < self.proportion_empty_prompts:
captions.append("")
else:
if self.use_generic_prompts:
captions.append("best quality, high quality")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if self.is_train else caption[0])
else:
raise ValueError(
f"Caption column should contain either strings or lists of strings."
)
inputs = self.tokenizer(
captions, max_length=self.tokenizer.model_max_length, padding="max_length",
truncation=True, return_tensors="pt"
)
return inputs.input_ids
### >>>>>>>> >>>>>>>> image related >>>>>>>> >>>>>>>> ###
MONOCHROMATIC_MAX_VARIANCE = 0.3
def is_monochromatic_image(pil_img):
v = ImageStat.Stat(pil_img.convert('RGB')).var
return sum(v)<MONOCHROMATIC_MAX_VARIANCE
def isnumeric(text):
return (''.join(filter(str.isalnum, text))).isnumeric()
class TextPromptDataset(IterableDataset):
'''
The dataset for (text embedding, noise, generated latent) triplets.
'''
def __init__(self,
data_root,
tokenizer = None,
transform = None,
rank = 0,
world_size = 1,
shuffle = True,
):
self.tokenizer = tokenizer
self.transform = transform
self.img_root = os.path.join(data_root, 'JPEGImages')
self.data_list = []
print("#### Loading filename list...")
json_root = os.path.join(data_root, 'list')
json_list = [p for p in os.listdir(json_root) if p.startswith("shard") and p.endswith('.json')]
# duplicate several shards to make sure each process has the same number of shards
assert len(json_list) > world_size
duplicate = world_size - len(json_list)%world_size if len(json_list)%world_size>0 else 0
json_list = json_list + json_list[:duplicate]
json_list = json_list[rank::world_size]
for json_file in tqdm(json_list):
shard_name = os.path.basename(json_file).split('.')[0]
with open(os.path.join(json_root, json_file)) as f:
key_text_pairs = json.load(f)
for pair in key_text_pairs:
self.data_list.append( [shard_name] + pair )
print("#### All filename loaded...")
self.shuffle = shuffle
def __len__(self):
return len(self.data_list)
def __iter__(self):
worker_info = get_worker_info()
if worker_info is None: # single-process data loading, return the full iterator
data_list = self.data_list
else:
len_data = len(self.data_list) - len(self.data_list) % worker_info.num_workers
data_list = self.data_list[:len_data][worker_info.id :: worker_info.num_workers]
# print(worker_info.num_workers, worker_info.id, len(data_list)/len(self.data_list))
if self.shuffle:
random.shuffle(data_list)
while True:
for idx in range(len(data_list)):
# try:
shard_name = data_list[idx][0]
data = {}
img_file = data_list[idx][1]
img = Image.open(os.path.join(self.img_root, shard_name, img_file+'.jpg')).convert("RGB")
if is_monochromatic_image(img):
continue
if self.transform is not None:
img = self.transform(img)
data['pixel_values'] = img
text = data_list[idx][2]
if self.tokenizer is not None:
if isinstance(self.tokenizer, list):
assert len(self.tokenizer)==2
data['input_ids'] = self.tokenizer[0](text)[0]
data['input_ids_2'] = self.tokenizer[1](text)[0]
else:
data['input_ids'] = self.tokenizer(text)[0]
else:
data['input_ids'] = text
yield data
# except Exception as e:
# raise(e)
def collate_fn(self, examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
if self.tokenizer is not None:
if isinstance(self.tokenizer, list):
assert len(self.tokenizer)==2
input_ids = torch.stack([example["input_ids"] for example in examples])
input_ids_2 = torch.stack([example["input_ids_2"] for example in examples])
return {"pixel_values": pixel_values, "input_ids": input_ids, "input_ids_2": input_ids_2,}
else:
input_ids = torch.stack([example["input_ids"] for example in examples])
return {"pixel_values": pixel_values, "input_ids": input_ids,}
else:
input_ids = [example["input_ids"] for example in examples]
return {"pixel_values": pixel_values, "input_ids": input_ids,}
def make_train_dataset(
train_data_path,
size = 512,
tokenizer=None,
cfg_drop_ratio=0,
rank=0,
world_size=1,
shuffle=True,
):
_image_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(size),
T.CenterCrop((size,size)),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
if tokenizer is not None:
if isinstance(tokenizer, list):
assert len(tokenizer)==2
tokenizer_1 = TokenizerWrapper(
tokenizer[0],
is_train=True,
proportion_empty_prompts=cfg_drop_ratio,
use_generic_prompts=False,
)
tokenizer_2 = TokenizerWrapper(
tokenizer[1],
is_train=True,
proportion_empty_prompts=cfg_drop_ratio,
use_generic_prompts=False,
)
tokenizer = [tokenizer_1, tokenizer_2]
else:
tokenizer = TokenizerWrapper(
tokenizer,
is_train=True,
proportion_empty_prompts=cfg_drop_ratio,
use_generic_prompts=False,
)
train_dataset = TextPromptDataset(
data_root=train_data_path,
transform=_image_transform,
rank=rank,
world_size=world_size,
tokenizer=tokenizer,
shuffle=shuffle,
)
return train_dataset
### >>>>>>>> >>>>>>>> Test >>>>>>>> >>>>>>>> ###
if __name__ == "__main__":
from transformers import CLIPTextModel, CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
"/mnt/bn/ic-research-aigc-editing/fast-diffusion-models/assets/public_models/StableDiffusion/stable-diffusion-v1-5",
subfolder="tokenizer"
)
train_dataset = make_train_dataset(tokenizer=tokenizer, rank=0, world_size=10)
loader = torch.utils.data.DataLoader(
train_dataset, batch_size=64, num_workers=0,
collate_fn=train_dataset.collect_fn if hasattr(train_dataset, 'collect_fn') else None,
)
for batch in loader:
pixel_values = batch["pixel_values"]
prompt_ids = batch['input_ids']
from einops import rearrange
pixel_values = rearrange(pixel_values, 'b c h w -> b h w c')
for i in range(pixel_values.shape[0]):
import pdb; pdb.set_trace()
Image.fromarray(((pixel_values[i] + 1 )/2 * 255 ).numpy().astype(np.uint8)).save('tmp.png')
input_id = prompt_ids[i]
text = tokenizer.decode(input_id).split('<|startoftext|>')[-1].split('<|endoftext|>')[0]
print(text)
pass