+
+
+
+
+
+ +🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction). + +🤗 Diffusers offers three core components: + +- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code. +- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality. +- Pretrained [models](https://huggingface.co/docs/diffusers/api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. + +## Installation + +We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/installation.html), please refer to their official documentation. + +### PyTorch + +With `pip` (official package): + +```bash +pip install --upgrade diffusers[torch] +``` + +With `conda` (maintained by the community): + +```sh +conda install -c conda-forge diffusers +``` + +### Flax + +With `pip` (official package): + +```bash +pip install --upgrade diffusers[flax] +``` + +### Apple Silicon (M1/M2) support + +Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide. + +## Quickstart + +Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 4000+ checkpoints): + +```python +from diffusers import DiffusionPipeline + +pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") +pipeline.to("cuda") +pipeline("An image of a squirrel in Picasso style").images[0] +``` + +You can also dig into the models and schedulers toolbox to build your own diffusion system: + +```python +from diffusers import DDPMScheduler, UNet2DModel +from PIL import Image +import torch +import numpy as np + +scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") +model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") +scheduler.set_timesteps(50) + +sample_size = model.config.sample_size +noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda") +input = noise + +for t in scheduler.timesteps: + with torch.no_grad(): + noisy_residual = model(input, t).sample + prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample + input = prev_noisy_sample + +image = (input / 2 + 0.5).clamp(0, 1) +image = image.cpu().permute(0, 2, 3, 1).numpy()[0] +image = Image.fromarray((image * 255).round().astype("uint8")) +image +``` + +Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today! + +## How to navigate the documentation + +| **Documentation** | **What can I learn?** | +|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | +| Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | +| Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | +| Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. | +| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. | + +## Supported pipelines + +| Pipeline | Paper | Tasks | +|---|---|:---:| +| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation | +| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation | +| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | +| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation | +| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation | +| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation | +| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation | +| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation | +| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image | +| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation | +| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting | +| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation | +| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation | +| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation | +| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [**Semantic Guidance**](https://arxiv.org/abs/2301.12247) | Text-Guided Generation | +| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | +| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | +| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | +| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [**MultiDiffusion**](https://multidiffusion.github.io/) | Text-to-Panorama Generation | +| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [**InstructPix2Pix**](https://github.com/timothybrooks/instruct-pix2pix) | Text-Guided Image Editing| +| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://pix2pixzero.github.io/) | Text-Guided Image Editing | +| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [**Attend and Excite for Stable Diffusion**](https://attendandexcite.github.io/Attend-and-Excite/) | Text-to-Image Generation | +| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://ku-cvlab.github.io/Self-Attention-Guidance) | Text-to-Image Generation | +| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation | +| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Depth-Conditional Stable Diffusion**](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image | +| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | +| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation | +| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation | +| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation | +| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation | +| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation | +| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation | +| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation | +| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation | + +## Contribution + +We ❤️ contributions from the open-source community! +If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md). +You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library. +- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute +- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines +- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) + +Also, say 👋 in our public Discord channel . We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or +just hang out ☕. + +## Credits + +This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today: + +- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion) +- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion) +- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim) +- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch) + +We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights. + +## Citation + +```bibtex +@misc{von-platen-etal-2022-diffusers, + author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf}, + title = {Diffusers: State-of-the-art diffusion models}, + year = {2022}, + publisher = {GitHub}, + journal = {GitHub repository}, + howpublished = {\url{https://github.com/huggingface/diffusers}} +} +``` diff --git a/diffusers/_typos.toml b/diffusers/_typos.toml new file mode 100644 index 0000000000000000000000000000000000000000..551099f981e7885fbda9ed28e297bace0e13407b --- /dev/null +++ b/diffusers/_typos.toml @@ -0,0 +1,13 @@ +# Files for typos +# Instruction: https://github.com/marketplace/actions/typos-action#getting-started + +[default.extend-identifiers] + +[default.extend-words] +NIN="NIN" # NIN is used in scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py +nd="np" # nd may be np (numpy) +parms="parms" # parms is used in scripts/convert_original_stable_diffusion_to_diffusers.py + + +[files] +extend-exclude = ["_typos.toml"] diff --git a/diffusers/docker/diffusers-flax-cpu/Dockerfile b/diffusers/docker/diffusers-flax-cpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..57a9c1ec742200b48f8c2f906d1152e85e60584a --- /dev/null +++ b/diffusers/docker/diffusers-flax-cpu/Dockerfile @@ -0,0 +1,44 @@ +FROM ubuntu:20.04 +LABEL maintainer="Hugging Face" +LABEL repository="diffusers" + +ENV DEBIAN_FRONTEND=noninteractive + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + git-lfs \ + curl \ + ca-certificates \ + libsndfile1-dev \ + python3.8 \ + python3-pip \ + python3.8-venv && \ + rm -rf /var/lib/apt/lists + +# make sure to use venv +RUN python3 -m venv /opt/venv +ENV PATH="/opt/venv/bin:$PATH" + +# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) +# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --upgrade --no-cache-dir \ + clu \ + "jax[cpu]>=0.2.16,!=0.3.2" \ + "flax>=0.4.1" \ + "jaxlib>=0.1.65" && \ + python3 -m pip install --no-cache-dir \ + accelerate \ + datasets \ + hf-doc-builder \ + huggingface-hub \ + Jinja2 \ + librosa \ + numpy \ + scipy \ + tensorboard \ + transformers + +CMD ["/bin/bash"] \ No newline at end of file diff --git a/diffusers/docker/diffusers-flax-tpu/Dockerfile b/diffusers/docker/diffusers-flax-tpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..2517da586d74b43c4c94a0eca4651f047345ec4d --- /dev/null +++ b/diffusers/docker/diffusers-flax-tpu/Dockerfile @@ -0,0 +1,46 @@ +FROM ubuntu:20.04 +LABEL maintainer="Hugging Face" +LABEL repository="diffusers" + +ENV DEBIAN_FRONTEND=noninteractive + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + git-lfs \ + curl \ + ca-certificates \ + libsndfile1-dev \ + python3.8 \ + python3-pip \ + python3.8-venv && \ + rm -rf /var/lib/apt/lists + +# make sure to use venv +RUN python3 -m venv /opt/venv +ENV PATH="/opt/venv/bin:$PATH" + +# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) +# follow the instructions here: https://cloud.google.com/tpu/docs/run-in-container#train_a_jax_model_in_a_docker_container +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + "jax[tpu]>=0.2.16,!=0.3.2" \ + -f https://storage.googleapis.com/jax-releases/libtpu_releases.html && \ + python3 -m pip install --upgrade --no-cache-dir \ + clu \ + "flax>=0.4.1" \ + "jaxlib>=0.1.65" && \ + python3 -m pip install --no-cache-dir \ + accelerate \ + datasets \ + hf-doc-builder \ + huggingface-hub \ + Jinja2 \ + librosa \ + numpy \ + scipy \ + tensorboard \ + transformers + +CMD ["/bin/bash"] \ No newline at end of file diff --git a/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile b/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..75f45be87a033e9476c4038218c9c2fd2f1255a5 --- /dev/null +++ b/diffusers/docker/diffusers-onnxruntime-cpu/Dockerfile @@ -0,0 +1,44 @@ +FROM ubuntu:20.04 +LABEL maintainer="Hugging Face" +LABEL repository="diffusers" + +ENV DEBIAN_FRONTEND=noninteractive + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + git-lfs \ + curl \ + ca-certificates \ + libsndfile1-dev \ + python3.8 \ + python3-pip \ + python3.8-venv && \ + rm -rf /var/lib/apt/lists + +# make sure to use venv +RUN python3 -m venv /opt/venv +ENV PATH="/opt/venv/bin:$PATH" + +# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + torch \ + torchvision \ + torchaudio \ + onnxruntime \ + --extra-index-url https://download.pytorch.org/whl/cpu && \ + python3 -m pip install --no-cache-dir \ + accelerate \ + datasets \ + hf-doc-builder \ + huggingface-hub \ + Jinja2 \ + librosa \ + numpy \ + scipy \ + tensorboard \ + transformers + +CMD ["/bin/bash"] \ No newline at end of file diff --git a/diffusers/docker/diffusers-onnxruntime-cuda/Dockerfile b/diffusers/docker/diffusers-onnxruntime-cuda/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..2129dbcaf68c57755485e1e54e867af05b937336 --- /dev/null +++ b/diffusers/docker/diffusers-onnxruntime-cuda/Dockerfile @@ -0,0 +1,44 @@ +FROM nvidia/cuda:11.6.2-cudnn8-devel-ubuntu20.04 +LABEL maintainer="Hugging Face" +LABEL repository="diffusers" + +ENV DEBIAN_FRONTEND=noninteractive + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + git-lfs \ + curl \ + ca-certificates \ + libsndfile1-dev \ + python3.8 \ + python3-pip \ + python3.8-venv && \ + rm -rf /var/lib/apt/lists + +# make sure to use venv +RUN python3 -m venv /opt/venv +ENV PATH="/opt/venv/bin:$PATH" + +# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + torch \ + torchvision \ + torchaudio \ + "onnxruntime-gpu>=1.13.1" \ + --extra-index-url https://download.pytorch.org/whl/cu117 && \ + python3 -m pip install --no-cache-dir \ + accelerate \ + datasets \ + hf-doc-builder \ + huggingface-hub \ + Jinja2 \ + librosa \ + numpy \ + scipy \ + tensorboard \ + transformers + +CMD ["/bin/bash"] \ No newline at end of file diff --git a/diffusers/docker/diffusers-pytorch-cpu/Dockerfile b/diffusers/docker/diffusers-pytorch-cpu/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..a70eff4c852b21e51c576e1e43172dd8dc25e1a0 --- /dev/null +++ b/diffusers/docker/diffusers-pytorch-cpu/Dockerfile @@ -0,0 +1,43 @@ +FROM ubuntu:20.04 +LABEL maintainer="Hugging Face" +LABEL repository="diffusers" + +ENV DEBIAN_FRONTEND=noninteractive + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + git-lfs \ + curl \ + ca-certificates \ + libsndfile1-dev \ + python3.8 \ + python3-pip \ + python3.8-venv && \ + rm -rf /var/lib/apt/lists + +# make sure to use venv +RUN python3 -m venv /opt/venv +ENV PATH="/opt/venv/bin:$PATH" + +# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + torch \ + torchvision \ + torchaudio \ + --extra-index-url https://download.pytorch.org/whl/cpu && \ + python3 -m pip install --no-cache-dir \ + accelerate \ + datasets \ + hf-doc-builder \ + huggingface-hub \ + Jinja2 \ + librosa \ + numpy \ + scipy \ + tensorboard \ + transformers + +CMD ["/bin/bash"] \ No newline at end of file diff --git a/diffusers/docker/diffusers-pytorch-cuda/Dockerfile b/diffusers/docker/diffusers-pytorch-cuda/Dockerfile new file mode 100644 index 0000000000000000000000000000000000000000..8087be4299967c535e9d34590118113f001721bd --- /dev/null +++ b/diffusers/docker/diffusers-pytorch-cuda/Dockerfile @@ -0,0 +1,42 @@ +FROM nvidia/cuda:11.7.1-cudnn8-runtime-ubuntu20.04 +LABEL maintainer="Hugging Face" +LABEL repository="diffusers" + +ENV DEBIAN_FRONTEND=noninteractive + +RUN apt update && \ + apt install -y bash \ + build-essential \ + git \ + git-lfs \ + curl \ + ca-certificates \ + libsndfile1-dev \ + python3.8 \ + python3-pip \ + python3.8-venv && \ + rm -rf /var/lib/apt/lists + +# make sure to use venv +RUN python3 -m venv /opt/venv +ENV PATH="/opt/venv/bin:$PATH" + +# pre-install the heavy dependencies (these can later be overridden by the deps from setup.py) +RUN python3 -m pip install --no-cache-dir --upgrade pip && \ + python3 -m pip install --no-cache-dir \ + torch \ + torchvision \ + torchaudio \ + python3 -m pip install --no-cache-dir \ + accelerate \ + datasets \ + hf-doc-builder \ + huggingface-hub \ + Jinja2 \ + librosa \ + numpy \ + scipy \ + tensorboard \ + transformers + +CMD ["/bin/bash"] diff --git a/diffusers/docs/README.md b/diffusers/docs/README.md new file mode 100644 index 0000000000000000000000000000000000000000..739f880f65650b5249bdce7539664e53b51d7496 --- /dev/null +++ b/diffusers/docs/README.md @@ -0,0 +1,271 @@ + + +# Generating the documentation + +To generate the documentation, you first have to build it. Several packages are necessary to build the doc, +you can install them with the following command, at the root of the code repository: + +```bash +pip install -e ".[docs]" +``` + +Then you need to install our open source documentation builder tool: + +```bash +pip install git+https://github.com/huggingface/doc-builder +``` + +--- +**NOTE** + +You only need to generate the documentation to inspect it locally (if you're planning changes and want to +check how they look before committing for instance). You don't have to commit the built documentation. + +--- + +## Previewing the documentation + +To preview the docs, first install the `watchdog` module with: + +```bash +pip install watchdog +``` + +Then run the following command: + +```bash +doc-builder preview {package_name} {path_to_docs} +``` + +For example: + +```bash +doc-builder preview diffusers docs/source/en +``` + +The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives. + +--- +**NOTE** + +The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again). + +--- + +## Adding a new element to the navigation bar + +Accepted files are Markdown (.md or .mdx). + +Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting +the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/diffusers/blob/main/docs/source/_toctree.yml) file. + +## Renaming section headers and moving sections + +It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information. + +Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor. + +So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file: + +``` +Sections that were moved: + +[ Section A ] +``` +and of course, if you moved it to another file, then: + +``` +Sections that were moved: + +[ Section A ] +``` + +Use the relative style to link to the new file so that the versioned docs continue to work. + +For an example of a rich moved section set please see the very end of [the transformers Trainer doc](https://github.com/huggingface/transformers/blob/main/docs/source/en/main_classes/trainer.mdx). + + +## Writing Documentation - Specification + +The `huggingface/diffusers` documentation follows the +[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings, +although we can write them directly in Markdown. + +### Adding a new tutorial + +Adding a new tutorial or section is done in two steps: + +- Add a new file under `docs/source`. This file can either be ReStructuredText (.rst) or Markdown (.md). +- Link that file in `docs/source/_toctree.yml` on the correct toc-tree. + +Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so +depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or four. + +### Adding a new pipeline/scheduler + +When adding a new pipeline: + +- create a file `xxx.mdx` under `docs/source/api/pipelines` (don't hesitate to copy an existing file as template). +- Link that file in (*Diffusers Summary*) section in `docs/source/api/pipelines/overview.mdx`, along with the link to the paper, and a colab notebook (if available). +- Write a short overview of the diffusion model: + - Overview with paper & authors + - Paper abstract + - Tips and tricks and how to use it best + - Possible an end-to-end example of how to use it +- Add all the pipeline classes that should be linked in the diffusion model. These classes should be added using our Markdown syntax. By default as follows: + +``` +## XXXPipeline + +[[autodoc]] XXXPipeline + - all + - __call__ +``` + +This will include every public method of the pipeline that is documented, as well as the `__call__` method that is not documented by default. If you just want to add additional methods that are not documented, you can put the list of all methods to add in a list that contains `all`. + +``` +[[autodoc]] XXXPipeline + - all + - __call__ + - enable_attention_slicing + - disable_attention_slicing + - enable_xformers_memory_efficient_attention + - disable_xformers_memory_efficient_attention +``` + +You can follow the same process to create a new scheduler under the `docs/source/api/schedulers` folder + +### Writing source documentation + +Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names +and objects like True, None, or any strings should usually be put in `code`. + +When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool +adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or +function to be in the main package. + +If you want to create a link to some internal class or function, you need to +provide its path. For instance: \[\`pipelines.ImagePipelineOutput\`\]. This will be converted into a link with +`pipelines.ImagePipelineOutput` in the description. To get rid of the path and only keep the name of the object you are +linking to in the description, add a ~: \[\`~pipelines.ImagePipelineOutput\`\] will generate a link with `ImagePipelineOutput` in the description. + +The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\]. + +#### Defining arguments in a method + +Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and +an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its +description: + +``` + Args: + n_layers (`int`): The number of layers of the model. +``` + +If the description is too long to fit in one line, another indentation is necessary before writing the description +after the argument. + +Here's an example showcasing everything so far: + +``` + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AlbertTokenizer`]. See [`~PreTrainedTokenizer.encode`] and + [`~PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) +``` + +For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the +following signature: + +``` +def my_function(x: str = None, a: float = 1): +``` + +then its documentation should look like this: + +``` + Args: + x (`str`, *optional*): + This argument controls ... + a (`float`, *optional*, defaults to 1): + This argument is used to ... +``` + +Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even +if the first line describing your argument type and its default gets long, you can't break it on several lines. You can +however write as many lines as you want in the indented description (see the example above with `input_ids`). + +#### Writing a multi-line code block + +Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown: + + +```` +``` +# first line of code +# second line +# etc +``` +```` + +#### Writing a return block + +The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation. +The first line should be the type of the return, followed by a line return. No need to indent further for the elements +building the return. + +Here's an example of a single value return: + +``` + Returns: + `List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token. +``` + +Here's an example of a tuple return, comprising several objects: + +``` + Returns: + `tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs: + - ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` -- + Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss. + - **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) -- + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). +``` + +#### Adding an image + +Due to the rapidly growing repository, it is important to make sure that no files that would significantly weigh down the repository are added. This includes images, videos, and other non-text files. We prefer to leverage a hf.co hosted `dataset` like +the ones hosted on [`hf-internal-testing`](https://huggingface.co/hf-internal-testing) in which to place these files and reference +them by URL. We recommend putting them in the following dataset: [huggingface/documentation-images](https://huggingface.co/datasets/huggingface/documentation-images). +If an external contribution, feel free to add the images to your PR and ask a Hugging Face member to migrate your images +to this dataset. + +## Styling the docstring + +We have an automatic script running with the `make style` command that will make sure that: +- the docstrings fully take advantage of the line width +- all code examples are formatted using black, like the code of the Transformers library + +This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's +recommended to commit your changes before running `make style`, so you can revert the changes done by that script +easily. + diff --git a/diffusers/docs/TRANSLATING.md b/diffusers/docs/TRANSLATING.md new file mode 100644 index 0000000000000000000000000000000000000000..32cd95f2ade9ba90ed6a10b1c54169b26a79d01d --- /dev/null +++ b/diffusers/docs/TRANSLATING.md @@ -0,0 +1,57 @@ +### Translating the Diffusers documentation into your language + +As part of our mission to democratize machine learning, we'd love to make the Diffusers library available in many more languages! Follow the steps below if you want to help translate the documentation into your language 🙏. + +**🗞️ Open an issue** + +To get started, navigate to the [Issues](https://github.com/huggingface/diffusers/issues) page of this repo and check if anyone else has opened an issue for your language. If not, open a new issue by selecting the "Translation template" from the "New issue" button. + +Once an issue exists, post a comment to indicate which chapters you'd like to work on, and we'll add your name to the list. + + +**🍴 Fork the repository** + +First, you'll need to [fork the Diffusers repo](https://docs.github.com/en/get-started/quickstart/fork-a-repo). You can do this by clicking on the **Fork** button on the top-right corner of this repo's page. + +Once you've forked the repo, you'll want to get the files on your local machine for editing. You can do that by cloning the fork with Git as follows: + +```bash +git clone https://github.com/YOUR-USERNAME/diffusers.git +``` + +**📋 Copy-paste the English version with a new language code** + +The documentation files are in one leading directory: + +- [`docs/source`](https://github.com/huggingface/diffusers/tree/main/docs/source): All the documentation materials are organized here by language. + +You'll only need to copy the files in the [`docs/source/en`](https://github.com/huggingface/diffusers/tree/main/docs/source/en) directory, so first navigate to your fork of the repo and run the following: + +```bash +cd ~/path/to/diffusers/docs +cp -r source/en source/LANG-ID +``` + +Here, `LANG-ID` should be one of the ISO 639-1 or ISO 639-2 language codes -- see [here](https://www.loc.gov/standards/iso639-2/php/code_list.php) for a handy table. + +**✍️ Start translating** + +The fun part comes - translating the text! + +The first thing we recommend is translating the part of the `_toctree.yml` file that corresponds to your doc chapter. This file is used to render the table of contents on the website. + +> 🙋 If the `_toctree.yml` file doesn't yet exist for your language, you can create one by copy-pasting from the English version and deleting the sections unrelated to your chapter. Just make sure it exists in the `docs/source/LANG-ID/` directory! + +The fields you should add are `local` (with the name of the file containing the translation; e.g. `autoclass_tutorial`), and `title` (with the title of the doc in your language; e.g. `Load pretrained instances with an AutoClass`) -- as a reference, here is the `_toctree.yml` for [English](https://github.com/huggingface/diffusers/blob/main/docs/source/en/_toctree.yml): + +```yaml +- sections: + - local: pipeline_tutorial # Do not change this! Use the same name for your .md file + title: Pipelines for inference # Translate this! + ... + title: Tutorials # Translate this! +``` + +Once you have translated the `_toctree.yml` file, you can start translating the [MDX](https://mdxjs.com/) files associated with your docs chapter. + +> 🙋 If you'd like others to help you with the translation, you should [open an issue](https://github.com/huggingface/diffusers/issues) and tag @patrickvonplaten. diff --git a/diffusers/docs/source/_config.py b/diffusers/docs/source/_config.py new file mode 100644 index 0000000000000000000000000000000000000000..9a4818ea8b1e19007c9e6440a3a98383031278cb --- /dev/null +++ b/diffusers/docs/source/_config.py @@ -0,0 +1,9 @@ +# docstyle-ignore +INSTALL_CONTENT = """ +# Diffusers installation +! pip install diffusers transformers datasets accelerate +# To install from source instead of the last release, comment the command above and uncomment the following one. +# ! pip install git+https://github.com/huggingface/diffusers.git +""" + +notebook_first_cells = [{"type": "code", "content": INSTALL_CONTENT}] \ No newline at end of file diff --git a/diffusers/docs/source/en/_toctree.yml b/diffusers/docs/source/en/_toctree.yml new file mode 100644 index 0000000000000000000000000000000000000000..dc40d9b142baf2e8b0ab0298a90131d353216c04 --- /dev/null +++ b/diffusers/docs/source/en/_toctree.yml @@ -0,0 +1,264 @@ +- sections: + - local: index + title: 🧨 Diffusers + - local: quicktour + title: Quicktour + - local: stable_diffusion + title: Effective and efficient diffusion + - local: installation + title: Installation + title: Get started +- sections: + - local: tutorials/tutorial_overview + title: Overview + - local: using-diffusers/write_own_pipeline + title: Understanding models and schedulers + - local: tutorials/basic_training + title: Train a diffusion model + title: Tutorials +- sections: + - sections: + - local: using-diffusers/loading_overview + title: Overview + - local: using-diffusers/loading + title: Load pipelines, models, and schedulers + - local: using-diffusers/schedulers + title: Load and compare different schedulers + - local: using-diffusers/custom_pipeline_overview + title: Load and add custom pipelines + - local: using-diffusers/kerascv + title: Load KerasCV Stable Diffusion checkpoints + title: Loading & Hub + - sections: + - local: using-diffusers/pipeline_overview + title: Overview + - local: using-diffusers/unconditional_image_generation + title: Unconditional image generation + - local: using-diffusers/conditional_image_generation + title: Text-to-image generation + - local: using-diffusers/img2img + title: Text-guided image-to-image + - local: using-diffusers/inpaint + title: Text-guided image-inpainting + - local: using-diffusers/depth2img + title: Text-guided depth-to-image + - local: using-diffusers/reusing_seeds + title: Improve image quality with deterministic generation + - local: using-diffusers/reproducibility + title: Create reproducible pipelines + - local: using-diffusers/custom_pipeline_examples + title: Community Pipelines + - local: using-diffusers/contribute_pipeline + title: How to contribute a Pipeline + - local: using-diffusers/using_safetensors + title: Using safetensors + - local: using-diffusers/stable_diffusion_jax_how_to + title: Stable Diffusion in JAX/Flax + - local: using-diffusers/weighted_prompts + title: Weighting Prompts + title: Pipelines for Inference + - sections: + - local: training/overview + title: Overview + - local: training/unconditional_training + title: Unconditional image generation + - local: training/text_inversion + title: Textual Inversion + - local: training/dreambooth + title: DreamBooth + - local: training/text2image + title: Text-to-image + - local: training/lora + title: Low-Rank Adaptation of Large Language Models (LoRA) + - local: training/controlnet + title: ControlNet + - local: training/instructpix2pix + title: InstructPix2Pix Training + title: Training + - sections: + - local: using-diffusers/rl + title: Reinforcement Learning + - local: using-diffusers/audio + title: Audio + - local: using-diffusers/other-modalities + title: Other Modalities + title: Taking Diffusers Beyond Images + title: Using Diffusers +- sections: + - local: optimization/opt_overview + title: Overview + - local: optimization/fp16 + title: Memory and Speed + - local: optimization/torch2.0 + title: Torch2.0 support + - local: optimization/xformers + title: xFormers + - local: optimization/onnx + title: ONNX + - local: optimization/open_vino + title: OpenVINO + - local: optimization/mps + title: MPS + - local: optimization/habana + title: Habana Gaudi + title: Optimization/Special Hardware +- sections: + - local: conceptual/philosophy + title: Philosophy + - local: using-diffusers/controlling_generation + title: Controlled generation + - local: conceptual/contribution + title: How to contribute? + - local: conceptual/ethical_guidelines + title: Diffusers' Ethical Guidelines + - local: conceptual/evaluation + title: Evaluating Diffusion Models + title: Conceptual Guides +- sections: + - sections: + - local: api/models + title: Models + - local: api/diffusion_pipeline + title: Diffusion Pipeline + - local: api/logging + title: Logging + - local: api/configuration + title: Configuration + - local: api/outputs + title: Outputs + - local: api/loaders + title: Loaders + title: Main Classes + - sections: + - local: api/pipelines/overview + title: Overview + - local: api/pipelines/alt_diffusion + title: AltDiffusion + - local: api/pipelines/audio_diffusion + title: Audio Diffusion + - local: api/pipelines/audioldm + title: AudioLDM + - local: api/pipelines/cycle_diffusion + title: Cycle Diffusion + - local: api/pipelines/dance_diffusion + title: Dance Diffusion + - local: api/pipelines/ddim + title: DDIM + - local: api/pipelines/ddpm + title: DDPM + - local: api/pipelines/dit + title: DiT + - local: api/pipelines/latent_diffusion + title: Latent Diffusion + - local: api/pipelines/paint_by_example + title: PaintByExample + - local: api/pipelines/pndm + title: PNDM + - local: api/pipelines/repaint + title: RePaint + - local: api/pipelines/stable_diffusion_safe + title: Safe Stable Diffusion + - local: api/pipelines/score_sde_ve + title: Score SDE VE + - local: api/pipelines/semantic_stable_diffusion + title: Semantic Guidance + - local: api/pipelines/spectrogram_diffusion + title: "Spectrogram Diffusion" + - sections: + - local: api/pipelines/stable_diffusion/overview + title: Overview + - local: api/pipelines/stable_diffusion/text2img + title: Text-to-Image + - local: api/pipelines/stable_diffusion/img2img + title: Image-to-Image + - local: api/pipelines/stable_diffusion/inpaint + title: Inpaint + - local: api/pipelines/stable_diffusion/depth2img + title: Depth-to-Image + - local: api/pipelines/stable_diffusion/image_variation + title: Image-Variation + - local: api/pipelines/stable_diffusion/upscale + title: Super-Resolution + - local: api/pipelines/stable_diffusion/latent_upscale + title: Stable-Diffusion-Latent-Upscaler + - local: api/pipelines/stable_diffusion/pix2pix + title: InstructPix2Pix + - local: api/pipelines/stable_diffusion/attend_and_excite + title: Attend and Excite + - local: api/pipelines/stable_diffusion/pix2pix_zero + title: Pix2Pix Zero + - local: api/pipelines/stable_diffusion/self_attention_guidance + title: Self-Attention Guidance + - local: api/pipelines/stable_diffusion/panorama + title: MultiDiffusion Panorama + - local: api/pipelines/stable_diffusion/controlnet + title: Text-to-Image Generation with ControlNet Conditioning + - local: api/pipelines/stable_diffusion/model_editing + title: Text-to-Image Model Editing + title: Stable Diffusion + - local: api/pipelines/stable_diffusion_2 + title: Stable Diffusion 2 + - local: api/pipelines/stable_unclip + title: Stable unCLIP + - local: api/pipelines/stochastic_karras_ve + title: Stochastic Karras VE + - local: api/pipelines/text_to_video + title: Text-to-Video + - local: api/pipelines/unclip + title: UnCLIP + - local: api/pipelines/latent_diffusion_uncond + title: Unconditional Latent Diffusion + - local: api/pipelines/versatile_diffusion + title: Versatile Diffusion + - local: api/pipelines/vq_diffusion + title: VQ Diffusion + title: Pipelines + - sections: + - local: api/schedulers/overview + title: Overview + - local: api/schedulers/ddim + title: DDIM + - local: api/schedulers/ddim_inverse + title: DDIMInverse + - local: api/schedulers/ddpm + title: DDPM + - local: api/schedulers/deis + title: DEIS + - local: api/schedulers/dpm_discrete + title: DPM Discrete Scheduler + - local: api/schedulers/dpm_discrete_ancestral + title: DPM Discrete Scheduler with ancestral sampling + - local: api/schedulers/euler_ancestral + title: Euler Ancestral Scheduler + - local: api/schedulers/euler + title: Euler scheduler + - local: api/schedulers/heun + title: Heun Scheduler + - local: api/schedulers/ipndm + title: IPNDM + - local: api/schedulers/lms_discrete + title: Linear Multistep + - local: api/schedulers/multistep_dpm_solver + title: Multistep DPM-Solver + - local: api/schedulers/pndm + title: PNDM + - local: api/schedulers/repaint + title: RePaint Scheduler + - local: api/schedulers/singlestep_dpm_solver + title: Singlestep DPM-Solver + - local: api/schedulers/stochastic_karras_ve + title: Stochastic Kerras VE + - local: api/schedulers/unipc + title: UniPCMultistepScheduler + - local: api/schedulers/score_sde_ve + title: VE-SDE + - local: api/schedulers/score_sde_vp + title: VP-SDE + - local: api/schedulers/vq_diffusion + title: VQDiffusionScheduler + title: Schedulers + - sections: + - local: api/experimental/rl + title: RL Planning + title: Experimental Features + title: API diff --git a/diffusers/docs/source/en/api/configuration.mdx b/diffusers/docs/source/en/api/configuration.mdx new file mode 100644 index 0000000000000000000000000000000000000000..2bbb42d9253804170a2312fa01522336a5cd7307 --- /dev/null +++ b/diffusers/docs/source/en/api/configuration.mdx @@ -0,0 +1,25 @@ + + +# Configuration + +Schedulers from [`~schedulers.scheduling_utils.SchedulerMixin`] and models from [`ModelMixin`] inherit from [`ConfigMixin`] which conveniently takes care of storing all the parameters that are +passed to their respective `__init__` methods in a JSON-configuration file. + +## ConfigMixin + +[[autodoc]] ConfigMixin + - load_config + - from_config + - save_config + - to_json_file + - to_json_string diff --git a/diffusers/docs/source/en/api/diffusion_pipeline.mdx b/diffusers/docs/source/en/api/diffusion_pipeline.mdx new file mode 100644 index 0000000000000000000000000000000000000000..280802d6a89ab8bd9181cb02d008d3f8970e220a --- /dev/null +++ b/diffusers/docs/source/en/api/diffusion_pipeline.mdx @@ -0,0 +1,47 @@ + + +# Pipelines + +The [`DiffusionPipeline`] is the easiest way to load any pretrained diffusion pipeline from the [Hub](https://huggingface.co/models?library=diffusers) and to use it in inference. + ++ + |
+ + + |
+
+
+ Real images.
+
+
+ Fake images.
+
+
+
+
+
Learn the fundamental skills you need to start generating outputs, build your own diffusion system, and train a diffusion model. We recommend starting here if you're using 🤗 Diffusers for the first time!
+ +Practical guides for helping you load pipelines, models, and schedulers. You'll also learn how to use pipelines for specific tasks, control how outputs are generated, optimize for inference speed, and different training techniques.
+ +Understand why the library was designed the way it was, and learn more about the ethical guidelines and safety implementations for using the library.
+ +Technical descriptions of how 🤗 Diffusers classes and methods work.
+ ++ +
+ +The output is an "edited" image that reflects the edit instruction applied on the input image: + ++ +
+ +The `train_instruct_pix2pix.py` script shows how to implement the training procedure and adapt it for Stable Diffusion. + +***Disclaimer: Even though `train_instruct_pix2pix.py` implements the InstructPix2Pix +training procedure while being faithful to the [original implementation](https://github.com/timothybrooks/instruct-pix2pix) we have only tested it on a [small-scale dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples). This can impact the end results. For better results, we recommend longer training runs with a larger dataset. [Here](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) you can find a large dataset for InstructPix2Pix training.*** + +## Running locally with PyTorch + +### Installing the dependencies + +Before running the scripts, make sure to install the library's training dependencies: + +**Important** + +To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: +```bash +git clone https://github.com/huggingface/diffusers +cd diffusers +pip install -e . +``` + +Then cd in the example folder and run +```bash +pip install -r requirements.txt +``` + +And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: + +```bash +accelerate config +``` + +Or for a default accelerate configuration without answering questions about your environment + +```bash +accelerate config default +``` + +Or if your environment doesn't support an interactive shell e.g. a notebook + +```python +from accelerate.utils import write_basic_config + +write_basic_config() +``` + +### Toy example + +As mentioned before, we'll use a [small toy dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples) for training. The dataset +is a smaller version of the [original dataset](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) used in the InstructPix2Pix paper. + +Configure environment variables such as the dataset identifier and the Stable Diffusion +checkpoint: + +```bash +export MODEL_NAME="runwayml/stable-diffusion-v1-5" +export DATASET_ID="fusing/instructpix2pix-1000-samples" +``` + +Now, we can launch training: + +```bash +accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --dataset_name=$DATASET_ID \ + --enable_xformers_memory_efficient_attention \ + --resolution=256 --random_flip \ + --train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \ + --max_train_steps=15000 \ + --checkpointing_steps=5000 --checkpoints_total_limit=1 \ + --learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \ + --conditioning_dropout_prob=0.05 \ + --mixed_precision=fp16 \ + --seed=42 +``` + +Additionally, we support performing validation inference to monitor training progress +with Weights and Biases. You can enable this feature with `report_to="wandb"`: + +```bash +accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --dataset_name=$DATASET_ID \ + --enable_xformers_memory_efficient_attention \ + --resolution=256 --random_flip \ + --train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \ + --max_train_steps=15000 \ + --checkpointing_steps=5000 --checkpoints_total_limit=1 \ + --learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \ + --conditioning_dropout_prob=0.05 \ + --mixed_precision=fp16 \ + --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ + --validation_prompt="make the mountains snowy" \ + --seed=42 \ + --report_to=wandb + ``` + + We recommend this type of validation as it can be useful for model debugging. Note that you need `wandb` installed to use this. You can install `wandb` by running `pip install wandb`. + + [Here](https://wandb.ai/sayakpaul/instruct-pix2pix/runs/ctr3kovq), you can find an example training run that includes some validation samples and the training hyperparameters. + + ***Note: In the original paper, the authors observed that even when the model is trained with an image resolution of 256x256, it generalizes well to bigger resolutions such as 512x512. This is likely because of the larger dataset they used during training.*** + + ## Inference + + Once training is complete, we can perform inference: + + ```python +import PIL +import requests +import torch +from diffusers import StableDiffusionInstructPix2PixPipeline + +model_id = "your_model_id" # <- replace this +pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") +generator = torch.Generator("cuda").manual_seed(0) + +url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/test_pix2pix_4.png" + + +def download_image(url): + image = PIL.Image.open(requests.get(url, stream=True).raw) + image = PIL.ImageOps.exif_transpose(image) + image = image.convert("RGB") + return image + + +image = download_image(url) +prompt = "wipe out the lake" +num_inference_steps = 20 +image_guidance_scale = 1.5 +guidance_scale = 10 + +edited_image = pipe( + prompt, + image=image, + num_inference_steps=num_inference_steps, + image_guidance_scale=image_guidance_scale, + guidance_scale=guidance_scale, + generator=generator, +).images[0] +edited_image.save("edited_image.png") +``` + +An example model repo obtained using this training script can be found +here - [sayakpaul/instruct-pix2pix](https://huggingface.co/sayakpaul/instruct-pix2pix). + +We encourage you to play with the following three parameters to control +speed and quality during performance: + +* `num_inference_steps` +* `image_guidance_scale` +* `guidance_scale` + +Particularly, `image_guidance_scale` and `guidance_scale` can have a profound impact +on the generated ("edited") image (see [here](https://twitter.com/RisingSayak/status/1628392199196151808?s=20) for an example). diff --git a/diffusers/docs/source/en/training/lora.mdx b/diffusers/docs/source/en/training/lora.mdx new file mode 100644 index 0000000000000000000000000000000000000000..1c72fbbc8d584128fabcfd8e29226df2db86d527 --- /dev/null +++ b/diffusers/docs/source/en/training/lora.mdx @@ -0,0 +1,214 @@ + + +# Low-Rank Adaptation of Large Language Models (LoRA) + +[[open-in-colab]] + +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ +
+ +The output is an "edited" image that reflects the edit instruction applied on the input image: + ++ +
+ +The `train_instruct_pix2pix.py` script shows how to implement the training procedure and adapt it for Stable Diffusion. + +***Disclaimer: Even though `train_instruct_pix2pix.py` implements the InstructPix2Pix +training procedure while being faithful to the [original implementation](https://github.com/timothybrooks/instruct-pix2pix) we have only tested it on a [small-scale dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples). This can impact the end results. For better results, we recommend longer training runs with a larger dataset. [Here](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) you can find a large dataset for InstructPix2Pix training.*** + +## Running locally with PyTorch + +### Installing the dependencies + +Before running the scripts, make sure to install the library's training dependencies: + +**Important** + +To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: +```bash +git clone https://github.com/huggingface/diffusers +cd diffusers +pip install -e . +``` + +Then cd in the example folder and run +```bash +pip install -r requirements.txt +``` + +And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: + +```bash +accelerate config +``` + +Or for a default accelerate configuration without answering questions about your environment + +```bash +accelerate config default +``` + +Or if your environment doesn't support an interactive shell e.g. a notebook + +```python +from accelerate.utils import write_basic_config +write_basic_config() +``` + +### Toy example + +As mentioned before, we'll use a [small toy dataset](https://huggingface.co/datasets/fusing/instructpix2pix-1000-samples) for training. The dataset +is a smaller version of the [original dataset](https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered) used in the InstructPix2Pix paper. + +Configure environment variables such as the dataset identifier and the Stable Diffusion +checkpoint: + +```bash +export MODEL_NAME="runwayml/stable-diffusion-v1-5" +export DATASET_ID="fusing/instructpix2pix-1000-samples" +``` + +Now, we can launch training: + +```bash +accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --dataset_name=$DATASET_ID \ + --enable_xformers_memory_efficient_attention \ + --resolution=256 --random_flip \ + --train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \ + --max_train_steps=15000 \ + --checkpointing_steps=5000 --checkpoints_total_limit=1 \ + --learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \ + --conditioning_dropout_prob=0.05 \ + --mixed_precision=fp16 \ + --seed=42 +``` + +Additionally, we support performing validation inference to monitor training progress +with Weights and Biases. You can enable this feature with `report_to="wandb"`: + +```bash +accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --dataset_name=$DATASET_ID \ + --enable_xformers_memory_efficient_attention \ + --resolution=256 --random_flip \ + --train_batch_size=4 --gradient_accumulation_steps=4 --gradient_checkpointing \ + --max_train_steps=15000 \ + --checkpointing_steps=5000 --checkpoints_total_limit=1 \ + --learning_rate=5e-05 --max_grad_norm=1 --lr_warmup_steps=0 \ + --conditioning_dropout_prob=0.05 \ + --mixed_precision=fp16 \ + --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ + --validation_prompt="make the mountains snowy" \ + --seed=42 \ + --report_to=wandb + ``` + + We recommend this type of validation as it can be useful for model debugging. Note that you need `wandb` installed to use this. You can install `wandb` by running `pip install wandb`. + + [Here](https://wandb.ai/sayakpaul/instruct-pix2pix/runs/ctr3kovq), you can find an example training run that includes some validation samples and the training hyperparameters. + + ***Note: In the original paper, the authors observed that even when the model is trained with an image resolution of 256x256, it generalizes well to bigger resolutions such as 512x512. This is likely because of the larger dataset they used during training.*** + + ## Inference + + Once training is complete, we can perform inference: + + ```python +import PIL +import requests +import torch +from diffusers import StableDiffusionInstructPix2PixPipeline + +model_id = "your_model_id" # <- replace this +pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") +generator = torch.Generator("cuda").manual_seed(0) + +url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/test_pix2pix_4.png" + + +def download_image(url): + image = PIL.Image.open(requests.get(url, stream=True).raw) + image = PIL.ImageOps.exif_transpose(image) + image = image.convert("RGB") + return image + +image = download_image(url) +prompt = "wipe out the lake" +num_inference_steps = 20 +image_guidance_scale = 1.5 +guidance_scale = 10 + +edited_image = pipe(prompt, + image=image, + num_inference_steps=num_inference_steps, + image_guidance_scale=image_guidance_scale, + guidance_scale=guidance_scale, + generator=generator, +).images[0] +edited_image.save("edited_image.png") +``` + +An example model repo obtained using this training script can be found +here - [sayakpaul/instruct-pix2pix](https://huggingface.co/sayakpaul/instruct-pix2pix). + +We encourage you to play with the following three parameters to control +speed and quality during performance: + +* `num_inference_steps` +* `image_guidance_scale` +* `guidance_scale` + +Particularly, `image_guidance_scale` and `guidance_scale` can have a profound impact +on the generated ("edited") image (see [here](https://twitter.com/RisingSayak/status/1628392199196151808?s=20) for an example). diff --git a/diffusers/examples/instruct_pix2pix/requirements.txt b/diffusers/examples/instruct_pix2pix/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..176ef92a1424045016a37252ef35fa1c7865701b --- /dev/null +++ b/diffusers/examples/instruct_pix2pix/requirements.txt @@ -0,0 +1,6 @@ +accelerate +torchvision +transformers>=4.25.1 +datasets +ftfy +tensorboard \ No newline at end of file diff --git a/diffusers/examples/instruct_pix2pix/train_instruct_pix2pix.py b/diffusers/examples/instruct_pix2pix/train_instruct_pix2pix.py new file mode 100644 index 0000000000000000000000000000000000000000..a119e12f73d1aaec4e383e8f8acf1b5a496ee1d7 --- /dev/null +++ b/diffusers/examples/instruct_pix2pix/train_instruct_pix2pix.py @@ -0,0 +1,988 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Script to fine-tune Stable Diffusion for InstructPix2Pix.""" + +import argparse +import logging +import math +import os +from pathlib import Path + +import accelerate +import datasets +import numpy as np +import PIL +import requests +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +import transformers +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import ProjectConfiguration, set_seed +from datasets import load_dataset +from huggingface_hub import create_repo, upload_folder +from packaging import version +from torchvision import transforms +from tqdm.auto import tqdm +from transformers import CLIPTextModel, CLIPTokenizer + +import diffusers +from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInstructPix2PixPipeline, UNet2DConditionModel +from diffusers.optimization import get_scheduler +from diffusers.training_utils import EMAModel +from diffusers.utils import check_min_version, deprecate, is_wandb_available +from diffusers.utils.import_utils import is_xformers_available + + +# Will error if the minimal version of diffusers is not installed. Remove at your own risks. +check_min_version("0.15.0.dev0") + +logger = get_logger(__name__, log_level="INFO") + +DATASET_NAME_MAPPING = { + "fusing/instructpix2pix-1000-samples": ("input_image", "edit_prompt", "edited_image"), +} +WANDB_TABLE_COL_NAMES = ["original_image", "edited_image", "edit_prompt"] + + +def parse_args(): + parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default=None, + required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--revision", + type=str, + default=None, + required=False, + help="Revision of pretrained model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--dataset_name", + type=str, + default=None, + help=( + "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," + " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," + " or to a folder containing files that 🤗 Datasets can understand." + ), + ) + parser.add_argument( + "--dataset_config_name", + type=str, + default=None, + help="The config of the Dataset, leave as None if there's only one config.", + ) + parser.add_argument( + "--train_data_dir", + type=str, + default=None, + help=( + "A folder containing the training data. Folder contents must follow the structure described in" + " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" + " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." + ), + ) + parser.add_argument( + "--original_image_column", + type=str, + default="input_image", + help="The column of the dataset containing the original image on which edits where made.", + ) + parser.add_argument( + "--edited_image_column", + type=str, + default="edited_image", + help="The column of the dataset containing the edited image.", + ) + parser.add_argument( + "--edit_prompt_column", + type=str, + default="edit_prompt", + help="The column of the dataset containing the edit instruction.", + ) + parser.add_argument( + "--val_image_url", + type=str, + default=None, + help="URL to the original image that you would like to edit (used during inference for debugging purposes).", + ) + parser.add_argument( + "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." + ) + parser.add_argument( + "--num_validation_images", + type=int, + default=4, + help="Number of images that should be generated during validation with `validation_prompt`.", + ) + parser.add_argument( + "--validation_epochs", + type=int, + default=1, + help=( + "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" + " `args.validation_prompt` multiple times: `args.num_validation_images`." + ), + ) + parser.add_argument( + "--max_train_samples", + type=int, + default=None, + help=( + "For debugging purposes or quicker training, truncate the number of training examples to this " + "value if set." + ), + ) + parser.add_argument( + "--output_dir", + type=str, + default="instruct-pix2pix-model", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument( + "--cache_dir", + type=str, + default=None, + help="The directory where the downloaded models and datasets will be stored.", + ) + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=256, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--center_crop", + default=False, + action="store_true", + help=( + "Whether to center crop the input images to the resolution. If not set, the images will be randomly" + " cropped. The images will be resized to the resolution first before cropping." + ), + ) + parser.add_argument( + "--random_flip", + action="store_true", + help="whether to randomly flip images horizontally", + ) + parser.add_argument( + "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." + ) + parser.add_argument("--num_train_epochs", type=int, default=100) + parser.add_argument( + "--max_train_steps", + type=int, + default=None, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument( + "--gradient_accumulation_steps", + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.", + ) + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + parser.add_argument( + "--learning_rate", + type=float, + default=1e-4, + help="Initial learning rate (after the potential warmup period) to use.", + ) + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--conditioning_dropout_prob", + type=float, + default=None, + help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", + ) + parser.add_argument( + "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." + ) + parser.add_argument( + "--allow_tf32", + action="store_true", + help=( + "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" + " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" + ), + ) + parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") + parser.add_argument( + "--non_ema_revision", + type=str, + default=None, + required=False, + help=( + "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" + " remote repository specified with --pretrained_model_name_or_path." + ), + ) + parser.add_argument( + "--dataloader_num_workers", + type=int, + default=0, + help=( + "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." + ), + ) + parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") + parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") + parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") + parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") + parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") + parser.add_argument( + "--hub_model_id", + type=str, + default=None, + help="The name of the repository to keep in sync with the local `output_dir`.", + ) + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + parser.add_argument( + "--mixed_precision", + type=str, + default=None, + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" + " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" + " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." + ), + ) + parser.add_argument( + "--report_to", + type=str, + default="tensorboard", + help=( + 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' + ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' + ), + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + parser.add_argument( + "--checkpointing_steps", + type=int, + default=500, + help=( + "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" + " training using `--resume_from_checkpoint`." + ), + ) + parser.add_argument( + "--checkpoints_total_limit", + type=int, + default=None, + help=( + "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." + " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" + " for more docs" + ), + ) + parser.add_argument( + "--resume_from_checkpoint", + type=str, + default=None, + help=( + "Whether training should be resumed from a previous checkpoint. Use a path saved by" + ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' + ), + ) + parser.add_argument( + "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." + ) + + args = parser.parse_args() + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + # Sanity checks + if args.dataset_name is None and args.train_data_dir is None: + raise ValueError("Need either a dataset name or a training folder.") + + # default to using the same revision for the non-ema model if not specified + if args.non_ema_revision is None: + args.non_ema_revision = args.revision + + return args + + +def convert_to_np(image, resolution): + image = image.convert("RGB").resize((resolution, resolution)) + return np.array(image).transpose(2, 0, 1) + + +def download_image(url): + image = PIL.Image.open(requests.get(url, stream=True).raw) + image = PIL.ImageOps.exif_transpose(image) + image = image.convert("RGB") + return image + + +def main(): + args = parse_args() + + if args.non_ema_revision is not None: + deprecate( + "non_ema_revision!=None", + "0.15.0", + message=( + "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" + " use `--variant=non_ema` instead." + ), + ) + logging_dir = os.path.join(args.output_dir, args.logging_dir) + accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with=args.report_to, + logging_dir=logging_dir, + project_config=accelerator_project_config, + ) + + generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) + + if args.report_to == "wandb": + if not is_wandb_available(): + raise ImportError("Make sure to install wandb if you want to use it for logging during training.") + import wandb + + # Make one log on every process with the configuration for debugging. + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + level=logging.INFO, + ) + logger.info(accelerator.state, main_process_only=False) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_warning() + diffusers.utils.logging.set_verbosity_info() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + diffusers.utils.logging.set_verbosity_error() + + # If passed along, set the training seed now. + if args.seed is not None: + set_seed(args.seed) + + # Handle the repository creation + if accelerator.is_main_process: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + if args.push_to_hub: + repo_id = create_repo( + repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token + ).repo_id + + # Load scheduler, tokenizer and models. + noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + tokenizer = CLIPTokenizer.from_pretrained( + args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision + ) + text_encoder = CLIPTextModel.from_pretrained( + args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision + ) + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) + unet = UNet2DConditionModel.from_pretrained( + args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision + ) + + # InstructPix2Pix uses an additional image for conditioning. To accommodate that, + # it uses 8 channels (instead of 4) in the first (conv) layer of the UNet. This UNet is + # then fine-tuned on the custom InstructPix2Pix dataset. This modified UNet is initialized + # from the pre-trained checkpoints. For the extra channels added to the first layer, they are + # initialized to zero. + if accelerator.is_main_process: + logger.info("Initializing the InstructPix2Pix UNet from the pretrained UNet.") + in_channels = 8 + out_channels = unet.conv_in.out_channels + unet.register_to_config(in_channels=in_channels) + + with torch.no_grad(): + new_conv_in = nn.Conv2d( + in_channels, out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding + ) + new_conv_in.weight.zero_() + new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) + unet.conv_in = new_conv_in + + # Freeze vae and text_encoder + vae.requires_grad_(False) + text_encoder.requires_grad_(False) + + # Create EMA for the unet. + if args.use_ema: + ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) + + if args.enable_xformers_memory_efficient_attention: + if is_xformers_available(): + import xformers + + xformers_version = version.parse(xformers.__version__) + if xformers_version == version.parse("0.0.16"): + logger.warn( + "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." + ) + unet.enable_xformers_memory_efficient_attention() + else: + raise ValueError("xformers is not available. Make sure it is installed correctly") + + # `accelerate` 0.16.0 will have better support for customized saving + if version.parse(accelerate.__version__) >= version.parse("0.16.0"): + # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format + def save_model_hook(models, weights, output_dir): + if args.use_ema: + ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) + + for i, model in enumerate(models): + model.save_pretrained(os.path.join(output_dir, "unet")) + + # make sure to pop weight so that corresponding model is not saved again + weights.pop() + + def load_model_hook(models, input_dir): + if args.use_ema: + load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) + ema_unet.load_state_dict(load_model.state_dict()) + ema_unet.to(accelerator.device) + del load_model + + for i in range(len(models)): + # pop models so that they are not loaded again + model = models.pop() + + # load diffusers style into model + load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") + model.register_to_config(**load_model.config) + + model.load_state_dict(load_model.state_dict()) + del load_model + + accelerator.register_save_state_pre_hook(save_model_hook) + accelerator.register_load_state_pre_hook(load_model_hook) + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + + # Enable TF32 for faster training on Ampere GPUs, + # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices + if args.allow_tf32: + torch.backends.cuda.matmul.allow_tf32 = True + + if args.scale_lr: + args.learning_rate = ( + args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes + ) + + # Initialize the optimizer + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError( + "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" + ) + + optimizer_cls = bnb.optim.AdamW8bit + else: + optimizer_cls = torch.optim.AdamW + + optimizer = optimizer_cls( + unet.parameters(), + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + # Get the datasets: you can either provide your own training and evaluation files (see below) + # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). + + # In distributed training, the load_dataset function guarantees that only one local process can concurrently + # download the dataset. + if args.dataset_name is not None: + # Downloading and loading a dataset from the hub. + dataset = load_dataset( + args.dataset_name, + args.dataset_config_name, + cache_dir=args.cache_dir, + ) + else: + data_files = {} + if args.train_data_dir is not None: + data_files["train"] = os.path.join(args.train_data_dir, "**") + dataset = load_dataset( + "imagefolder", + data_files=data_files, + cache_dir=args.cache_dir, + ) + # See more about loading custom images at + # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder + + # Preprocessing the datasets. + # We need to tokenize inputs and targets. + column_names = dataset["train"].column_names + + # 6. Get the column names for input/target. + dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) + if args.original_image_column is None: + original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] + else: + original_image_column = args.original_image_column + if original_image_column not in column_names: + raise ValueError( + f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" + ) + if args.edit_prompt_column is None: + edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1] + else: + edit_prompt_column = args.edit_prompt_column + if edit_prompt_column not in column_names: + raise ValueError( + f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" + ) + if args.edited_image_column is None: + edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2] + else: + edited_image_column = args.edited_image_column + if edited_image_column not in column_names: + raise ValueError( + f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" + ) + + # Preprocessing the datasets. + # We need to tokenize input captions and transform the images. + def tokenize_captions(captions): + inputs = tokenizer( + captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" + ) + return inputs.input_ids + + # Preprocessing the datasets. + train_transforms = transforms.Compose( + [ + transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), + transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), + ] + ) + + def preprocess_images(examples): + original_images = np.concatenate( + [convert_to_np(image, args.resolution) for image in examples[original_image_column]] + ) + edited_images = np.concatenate( + [convert_to_np(image, args.resolution) for image in examples[edited_image_column]] + ) + # We need to ensure that the original and the edited images undergo the same + # augmentation transforms. + images = np.concatenate([original_images, edited_images]) + images = torch.tensor(images) + images = 2 * (images / 255) - 1 + return train_transforms(images) + + def preprocess_train(examples): + # Preprocess images. + preprocessed_images = preprocess_images(examples) + # Since the original and edited images were concatenated before + # applying the transformations, we need to separate them and reshape + # them accordingly. + original_images, edited_images = preprocessed_images.chunk(2) + original_images = original_images.reshape(-1, 3, args.resolution, args.resolution) + edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) + + # Collate the preprocessed images into the `examples`. + examples["original_pixel_values"] = original_images + examples["edited_pixel_values"] = edited_images + + # Preprocess the captions. + captions = list(examples[edit_prompt_column]) + examples["input_ids"] = tokenize_captions(captions) + return examples + + with accelerator.main_process_first(): + if args.max_train_samples is not None: + dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) + # Set the training transforms + train_dataset = dataset["train"].with_transform(preprocess_train) + + def collate_fn(examples): + original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples]) + original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float() + edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples]) + edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float() + input_ids = torch.stack([example["input_ids"] for example in examples]) + return { + "original_pixel_values": original_pixel_values, + "edited_pixel_values": edited_pixel_values, + "input_ids": input_ids, + } + + # DataLoaders creation: + train_dataloader = torch.utils.data.DataLoader( + train_dataset, + shuffle=True, + collate_fn=collate_fn, + batch_size=args.train_batch_size, + num_workers=args.dataloader_num_workers, + ) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, + num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, + ) + + # Prepare everything with our `accelerator`. + unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, optimizer, train_dataloader, lr_scheduler + ) + + if args.use_ema: + ema_unet.to(accelerator.device) + + # For mixed precision training we cast the text_encoder and vae weights to half-precision + # as these models are only used for inference, keeping weights in full precision is not required. + weight_dtype = torch.float32 + if accelerator.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif accelerator.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # Move text_encode and vae to gpu and cast to weight_dtype + text_encoder.to(accelerator.device, dtype=weight_dtype) + vae.to(accelerator.device, dtype=weight_dtype) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterwards we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # We need to initialize the trackers we use, and also store our configuration. + # The trackers initializes automatically on the main process. + if accelerator.is_main_process: + accelerator.init_trackers("instruct-pix2pix", config=vars(args)) + + # Train! + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(train_dataset)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") + logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") + logger.info(f" Total optimization steps = {args.max_train_steps}") + global_step = 0 + first_epoch = 0 + + # Potentially load in the weights and states from a previous save + if args.resume_from_checkpoint: + if args.resume_from_checkpoint != "latest": + path = os.path.basename(args.resume_from_checkpoint) + else: + # Get the most recent checkpoint + dirs = os.listdir(args.output_dir) + dirs = [d for d in dirs if d.startswith("checkpoint")] + dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) + path = dirs[-1] if len(dirs) > 0 else None + + if path is None: + accelerator.print( + f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." + ) + args.resume_from_checkpoint = None + else: + accelerator.print(f"Resuming from checkpoint {path}") + accelerator.load_state(os.path.join(args.output_dir, path)) + global_step = int(path.split("-")[1]) + + resume_global_step = global_step * args.gradient_accumulation_steps + first_epoch = global_step // num_update_steps_per_epoch + resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) + progress_bar.set_description("Steps") + + for epoch in range(first_epoch, args.num_train_epochs): + unet.train() + train_loss = 0.0 + for step, batch in enumerate(train_dataloader): + # Skip steps until we reach the resumed step + if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: + if step % args.gradient_accumulation_steps == 0: + progress_bar.update(1) + continue + + with accelerator.accumulate(unet): + # We want to learn the denoising process w.r.t the edited images which + # are conditioned on the original image (which was edited) and the edit instruction. + # So, first, convert images to latent space. + latents = vae.encode(batch["edited_pixel_values"].to(weight_dtype)).latent_dist.sample() + latents = latents * vae.config.scaling_factor + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents) + bsz = latents.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Get the text embedding for conditioning. + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + + # Get the additional image embedding for conditioning. + # Instead of getting a diagonal Gaussian here, we simply take the mode. + original_image_embeds = vae.encode(batch["original_pixel_values"].to(weight_dtype)).latent_dist.mode() + + # Conditioning dropout to support classifier-free guidance during inference. For more details + # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. + if args.conditioning_dropout_prob is not None: + random_p = torch.rand(bsz, device=latents.device, generator=generator) + # Sample masks for the edit prompts. + prompt_mask = random_p < 2 * args.conditioning_dropout_prob + prompt_mask = prompt_mask.reshape(bsz, 1, 1) + # Final text conditioning. + null_conditioning = text_encoder(tokenize_captions([""]).to(accelerator.device))[0] + encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) + + # Sample masks for the original images. + image_mask_dtype = original_image_embeds.dtype + image_mask = 1 - ( + (random_p >= args.conditioning_dropout_prob).to(image_mask_dtype) + * (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype) + ) + image_mask = image_mask.reshape(bsz, 1, 1, 1) + # Final image conditioning. + original_image_embeds = image_mask * original_image_embeds + + # Concatenate the `original_image_embeds` with the `noisy_latents`. + concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1) + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + # Predict the noise residual and compute loss + model_pred = unet(concatenated_noisy_latents, timesteps, encoder_hidden_states).sample + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + + # Gather the losses across all processes for logging (if we use distributed training). + avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() + train_loss += avg_loss.item() / args.gradient_accumulation_steps + + # Backpropagate + accelerator.backward(loss) + if accelerator.sync_gradients: + accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + if args.use_ema: + ema_unet.step(unet.parameters()) + progress_bar.update(1) + global_step += 1 + accelerator.log({"train_loss": train_loss}, step=global_step) + train_loss = 0.0 + + if global_step % args.checkpointing_steps == 0: + if accelerator.is_main_process: + save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") + accelerator.save_state(save_path) + logger.info(f"Saved state to {save_path}") + + logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + + if global_step >= args.max_train_steps: + break + + if accelerator.is_main_process: + if ( + (args.val_image_url is not None) + and (args.validation_prompt is not None) + and (epoch % args.validation_epochs == 0) + ): + logger.info( + f"Running validation... \n Generating {args.num_validation_images} images with prompt:" + f" {args.validation_prompt}." + ) + # create pipeline + if args.use_ema: + # Store the UNet parameters temporarily and load the EMA parameters to perform inference. + ema_unet.store(unet.parameters()) + ema_unet.copy_to(unet.parameters()) + pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=unet, + revision=args.revision, + torch_dtype=weight_dtype, + ) + pipeline = pipeline.to(accelerator.device) + pipeline.set_progress_bar_config(disable=True) + + # run inference + original_image = download_image(args.val_image_url) + edited_images = [] + with torch.autocast(str(accelerator.device), enabled=accelerator.mixed_precision == "fp16"): + for _ in range(args.num_validation_images): + edited_images.append( + pipeline( + args.validation_prompt, + image=original_image, + num_inference_steps=20, + image_guidance_scale=1.5, + guidance_scale=7, + generator=generator, + ).images[0] + ) + + for tracker in accelerator.trackers: + if tracker.name == "wandb": + wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) + for edited_image in edited_images: + wandb_table.add_data( + wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt + ) + tracker.log({"validation": wandb_table}) + if args.use_ema: + # Switch back to the original UNet parameters. + ema_unet.restore(unet.parameters()) + + del pipeline + torch.cuda.empty_cache() + + # Create the pipeline using the trained modules and save it. + accelerator.wait_for_everyone() + if accelerator.is_main_process: + unet = accelerator.unwrap_model(unet) + if args.use_ema: + ema_unet.copy_to(unet.parameters()) + + pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( + args.pretrained_model_name_or_path, + text_encoder=accelerator.unwrap_model(text_encoder), + vae=accelerator.unwrap_model(vae), + unet=unet, + revision=args.revision, + ) + pipeline.save_pretrained(args.output_dir) + + if args.push_to_hub: + upload_folder( + repo_id=repo_id, + folder_path=args.output_dir, + commit_message="End of training", + ignore_patterns=["step_*", "epoch_*"], + ) + + if args.validation_prompt is not None: + edited_images = [] + pipeline = pipeline.to(accelerator.device) + with torch.autocast(str(accelerator.device)): + for _ in range(args.num_validation_images): + edited_images.append( + pipeline( + args.validation_prompt, + image=original_image, + num_inference_steps=20, + image_guidance_scale=1.5, + guidance_scale=7, + generator=generator, + ).images[0] + ) + + for tracker in accelerator.trackers: + if tracker.name == "wandb": + wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) + for edited_image in edited_images: + wandb_table.add_data( + wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt + ) + tracker.log({"test": wandb_table}) + + accelerator.end_training() + + +if __name__ == "__main__": + main() diff --git a/diffusers/examples/research_projects/README.md b/diffusers/examples/research_projects/README.md new file mode 100644 index 0000000000000000000000000000000000000000..ef50d423e68ff5c641e4419bd30f84787aebf839 --- /dev/null +++ b/diffusers/examples/research_projects/README.md @@ -0,0 +1,14 @@ +# Research projects + +This folder contains various research projects using 🧨 Diffusers. +They are not really maintained by the core maintainers of this library and often require a specific version of Diffusers that is indicated in the requirements file of each folder. +Updating them to the most recent version of the library will require some work. + +To use any of them, just run the command + +``` +pip install -r requirements.txt +``` +inside the folder of your choice. + +If you need help with any of those, please open an issue where you directly ping the author(s), as indicated at the top of the README of each folder. diff --git a/diffusers/examples/research_projects/colossalai/README.md b/diffusers/examples/research_projects/colossalai/README.md new file mode 100644 index 0000000000000000000000000000000000000000..7c428bbce736de2ba25f189ff19d4c8216c53fc5 --- /dev/null +++ b/diffusers/examples/research_projects/colossalai/README.md @@ -0,0 +1,111 @@ +# [DreamBooth](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth) by [colossalai](https://github.com/hpcaitech/ColossalAI.git) + +[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. +The `train_dreambooth_colossalai.py` script shows how to implement the training procedure and adapt it for stable diffusion. + +By accommodating model data in CPU and GPU and moving the data to the computing device when necessary, [Gemini](https://www.colossalai.org/docs/advanced_tutorials/meet_gemini), the Heterogeneous Memory Manager of [Colossal-AI](https://github.com/hpcaitech/ColossalAI) can breakthrough the GPU memory wall by using GPU and CPU memory (composed of CPU DRAM or nvme SSD memory) together at the same time. Moreover, the model scale can be further improved by combining heterogeneous training with the other parallel approaches, such as data parallel, tensor parallel and pipeline parallel. + +## Installing the dependencies + +Before running the scripts, make sure to install the library's training dependencies: + +```bash +pip install -r requirements.txt +``` + +## Install [ColossalAI](https://github.com/hpcaitech/ColossalAI.git) + +**From PyPI** +```bash +pip install colossalai +``` + +**From source** + +```bash +git clone https://github.com/hpcaitech/ColossalAI.git +cd ColossalAI + +# install colossalai +pip install . +``` + +## Dataset for Teyvat BLIP captions +Dataset used to train [Teyvat characters text to image model](https://github.com/hpcaitech/ColossalAI/tree/main/examples/images/diffusion). + +BLIP generated captions for characters images from [genshin-impact fandom wiki](https://genshin-impact.fandom.com/wiki/Character#Playable_Characters)and [biligame wiki for genshin impact](https://wiki.biligame.com/ys/%E8%A7%92%E8%89%B2). + +For each row the dataset contains `image` and `text` keys. `image` is a varying size PIL png, and `text` is the accompanying text caption. Only a train split is provided. + +The `text` include the tag `Teyvat`, `Name`,`Element`, `Weapon`, `Region`, `Model type`, and `Description`, the `Description` is captioned with the [pre-trained BLIP model](https://github.com/salesforce/BLIP). + +## Training + +The arguement `placement` can be `cpu`, `auto`, `cuda`, with `cpu` the GPU RAM required can be minimized to 4GB but will deceleration, with `cuda` you can also reduce GPU memory by half but accelerated training, with `auto` a more balanced solution for speed and memory can be obtained。 + +**___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** + +```bash +export MODEL_NAME="CompVis/stable-diffusion-v1-4" +export INSTANCE_DIR="path-to-instance-images" +export OUTPUT_DIR="path-to-save-model" + +torchrun --nproc_per_node 2 train_dreambooth_colossalai.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --instance_data_dir=$INSTANCE_DIR \ + --output_dir=$OUTPUT_DIR \ + --instance_prompt="a photo of sks dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --learning_rate=5e-6 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --max_train_steps=400 \ + --placement="cuda" +``` + + +### Training with prior-preservation loss + +Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. +According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. The `num_class_images` flag sets the number of images to generate with the class prompt. You can place existing images in `class_data_dir`, and the training script will generate any additional images so that `num_class_images` are present in `class_data_dir` during training time. + +```bash +export MODEL_NAME="CompVis/stable-diffusion-v1-4" +export INSTANCE_DIR="path-to-instance-images" +export CLASS_DIR="path-to-class-images" +export OUTPUT_DIR="path-to-save-model" + +torchrun --nproc_per_node 2 train_dreambooth_colossalai.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --instance_data_dir=$INSTANCE_DIR \ + --class_data_dir=$CLASS_DIR \ + --output_dir=$OUTPUT_DIR \ + --with_prior_preservation --prior_loss_weight=1.0 \ + --instance_prompt="a photo of sks dog" \ + --class_prompt="a photo of dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --learning_rate=5e-6 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --max_train_steps=800 \ + --placement="cuda" +``` + +## Inference + +Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `identifier`(e.g. sks in above example) in your prompt. + +```python +from diffusers import StableDiffusionPipeline +import torch + +model_id = "path-to-save-model" +pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") + +prompt = "A photo of sks dog in a bucket" +image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] + +image.save("dog-bucket.png") +``` diff --git a/diffusers/examples/research_projects/colossalai/inference.py b/diffusers/examples/research_projects/colossalai/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..3b115c2d2b8f5bcdb3a0c053a6c71b91a965c573 --- /dev/null +++ b/diffusers/examples/research_projects/colossalai/inference.py @@ -0,0 +1,12 @@ +import torch + +from diffusers import StableDiffusionPipeline + + +model_id = "path-to-your-trained-model" +pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") + +prompt = "A photo of sks dog in a bucket" +image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] + +image.save("dog-bucket.png") diff --git a/diffusers/examples/research_projects/colossalai/requirement.txt b/diffusers/examples/research_projects/colossalai/requirement.txt new file mode 100644 index 0000000000000000000000000000000000000000..f80467dcff521bfed1fa72109e1e01e92ab05646 --- /dev/null +++ b/diffusers/examples/research_projects/colossalai/requirement.txt @@ -0,0 +1,7 @@ +diffusers +torch +torchvision +ftfy +tensorboard +Jinja2 +transformers \ No newline at end of file diff --git a/diffusers/examples/research_projects/colossalai/train_dreambooth_colossalai.py b/diffusers/examples/research_projects/colossalai/train_dreambooth_colossalai.py new file mode 100644 index 0000000000000000000000000000000000000000..3d4466bf94b74c5b324b970913c142342871cf78 --- /dev/null +++ b/diffusers/examples/research_projects/colossalai/train_dreambooth_colossalai.py @@ -0,0 +1,673 @@ +import argparse +import hashlib +import math +import os +from pathlib import Path + +import colossalai +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from colossalai.context.parallel_mode import ParallelMode +from colossalai.core import global_context as gpc +from colossalai.logging import disable_existing_loggers, get_dist_logger +from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer +from colossalai.nn.parallel.utils import get_static_torch_model +from colossalai.utils import get_current_device +from colossalai.utils.model.colo_init_context import ColoInitContext +from huggingface_hub import create_repo, upload_folder +from PIL import Image +from torch.utils.data import Dataset +from torchvision import transforms +from tqdm.auto import tqdm +from transformers import AutoTokenizer, PretrainedConfig + +from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel +from diffusers.optimization import get_scheduler + + +disable_existing_loggers() +logger = get_dist_logger() + + +def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): + text_encoder_config = PretrainedConfig.from_pretrained( + pretrained_model_name_or_path, + subfolder="text_encoder", + revision=args.revision, + ) + model_class = text_encoder_config.architectures[0] + + if model_class == "CLIPTextModel": + from transformers import CLIPTextModel + + return CLIPTextModel + elif model_class == "RobertaSeriesModelWithTransformation": + from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation + + return RobertaSeriesModelWithTransformation + else: + raise ValueError(f"{model_class} is not supported.") + + +def parse_args(input_args=None): + parser = argparse.ArgumentParser(description="Simple example of a training script.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default=None, + required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--revision", + type=str, + default=None, + required=False, + help="Revision of pretrained model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--tokenizer_name", + type=str, + default=None, + help="Pretrained tokenizer name or path if not the same as model_name", + ) + parser.add_argument( + "--instance_data_dir", + type=str, + default=None, + required=True, + help="A folder containing the training data of instance images.", + ) + parser.add_argument( + "--class_data_dir", + type=str, + default=None, + required=False, + help="A folder containing the training data of class images.", + ) + parser.add_argument( + "--instance_prompt", + type=str, + default="a photo of sks dog", + required=False, + help="The prompt with identifier specifying the instance", + ) + parser.add_argument( + "--class_prompt", + type=str, + default=None, + help="The prompt to specify images in the same class as provided instance images.", + ) + parser.add_argument( + "--with_prior_preservation", + default=False, + action="store_true", + help="Flag to add prior preservation loss.", + ) + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") + parser.add_argument( + "--num_class_images", + type=int, + default=100, + help=( + "Minimal class images for prior preservation loss. If there are not enough images already present in" + " class_data_dir, additional images will be sampled with class_prompt." + ), + ) + parser.add_argument( + "--output_dir", + type=str, + default="text-inversion-model", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=512, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--placement", + type=str, + default="cpu", + help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", + ) + parser.add_argument( + "--center_crop", + default=False, + action="store_true", + help=( + "Whether to center crop the input images to the resolution. If not set, the images will be randomly" + " cropped. The images will be resized to the resolution first before cropping." + ), + ) + parser.add_argument( + "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." + ) + parser.add_argument( + "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." + ) + parser.add_argument("--num_train_epochs", type=int, default=1) + parser.add_argument( + "--max_train_steps", + type=int, + default=None, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + parser.add_argument( + "--learning_rate", + type=float, + default=5e-6, + help="Initial learning rate (after the potential warmup period) to use.", + ) + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." + ) + + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") + parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") + parser.add_argument( + "--hub_model_id", + type=str, + default=None, + help="The name of the repository to keep in sync with the local `output_dir`.", + ) + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + parser.add_argument( + "--mixed_precision", + type=str, + default=None, + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" + " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" + " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." + ), + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + + if input_args is not None: + args = parser.parse_args(input_args) + else: + args = parser.parse_args() + + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + if args.with_prior_preservation: + if args.class_data_dir is None: + raise ValueError("You must specify a data directory for class images.") + if args.class_prompt is None: + raise ValueError("You must specify prompt for class images.") + else: + if args.class_data_dir is not None: + logger.warning("You need not use --class_data_dir without --with_prior_preservation.") + if args.class_prompt is not None: + logger.warning("You need not use --class_prompt without --with_prior_preservation.") + + return args + + +class DreamBoothDataset(Dataset): + """ + A dataset to prepare the instance and class images with the prompts for fine-tuning the model. + It pre-processes the images and the tokenizes prompts. + """ + + def __init__( + self, + instance_data_root, + instance_prompt, + tokenizer, + class_data_root=None, + class_prompt=None, + size=512, + center_crop=False, + ): + self.size = size + self.center_crop = center_crop + self.tokenizer = tokenizer + + self.instance_data_root = Path(instance_data_root) + if not self.instance_data_root.exists(): + raise ValueError("Instance images root doesn't exists.") + + self.instance_images_path = list(Path(instance_data_root).iterdir()) + self.num_instance_images = len(self.instance_images_path) + self.instance_prompt = instance_prompt + self._length = self.num_instance_images + + if class_data_root is not None: + self.class_data_root = Path(class_data_root) + self.class_data_root.mkdir(parents=True, exist_ok=True) + self.class_images_path = list(self.class_data_root.iterdir()) + self.num_class_images = len(self.class_images_path) + self._length = max(self.num_class_images, self.num_instance_images) + self.class_prompt = class_prompt + else: + self.class_data_root = None + + self.image_transforms = transforms.Compose( + [ + transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def __len__(self): + return self._length + + def __getitem__(self, index): + example = {} + instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) + if not instance_image.mode == "RGB": + instance_image = instance_image.convert("RGB") + example["instance_images"] = self.image_transforms(instance_image) + example["instance_prompt_ids"] = self.tokenizer( + self.instance_prompt, + padding="do_not_pad", + truncation=True, + max_length=self.tokenizer.model_max_length, + ).input_ids + + if self.class_data_root: + class_image = Image.open(self.class_images_path[index % self.num_class_images]) + if not class_image.mode == "RGB": + class_image = class_image.convert("RGB") + example["class_images"] = self.image_transforms(class_image) + example["class_prompt_ids"] = self.tokenizer( + self.class_prompt, + padding="do_not_pad", + truncation=True, + max_length=self.tokenizer.model_max_length, + ).input_ids + + return example + + +class PromptDataset(Dataset): + "A simple dataset to prepare the prompts to generate class images on multiple GPUs." + + def __init__(self, prompt, num_samples): + self.prompt = prompt + self.num_samples = num_samples + + def __len__(self): + return self.num_samples + + def __getitem__(self, index): + example = {} + example["prompt"] = self.prompt + example["index"] = index + return example + + +# Gemini + ZeRO DDP +def gemini_zero_dpp(model: torch.nn.Module, placememt_policy: str = "auto"): + from colossalai.nn.parallel import GeminiDDP + + model = GeminiDDP( + model, device=get_current_device(), placement_policy=placememt_policy, pin_memory=True, search_range_mb=64 + ) + return model + + +def main(args): + if args.seed is None: + colossalai.launch_from_torch(config={}) + else: + colossalai.launch_from_torch(config={}, seed=args.seed) + + local_rank = gpc.get_local_rank(ParallelMode.DATA) + world_size = gpc.get_world_size(ParallelMode.DATA) + + if args.with_prior_preservation: + class_images_dir = Path(args.class_data_dir) + if not class_images_dir.exists(): + class_images_dir.mkdir(parents=True) + cur_class_images = len(list(class_images_dir.iterdir())) + + if cur_class_images < args.num_class_images: + torch_dtype = torch.float16 if get_current_device() == "cuda" else torch.float32 + pipeline = DiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + torch_dtype=torch_dtype, + safety_checker=None, + revision=args.revision, + ) + pipeline.set_progress_bar_config(disable=True) + + num_new_images = args.num_class_images - cur_class_images + logger.info(f"Number of class images to sample: {num_new_images}.") + + sample_dataset = PromptDataset(args.class_prompt, num_new_images) + sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) + + pipeline.to(get_current_device()) + + for example in tqdm( + sample_dataloader, + desc="Generating class images", + disable=not local_rank == 0, + ): + images = pipeline(example["prompt"]).images + + for i, image in enumerate(images): + hash_image = hashlib.sha1(image.tobytes()).hexdigest() + image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" + image.save(image_filename) + + del pipeline + + # Handle the repository creation + if local_rank == 0: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + if args.push_to_hub: + repo_id = create_repo( + repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token + ).repo_id + + # Load the tokenizer + if args.tokenizer_name: + logger.info(f"Loading tokenizer from {args.tokenizer_name}", ranks=[0]) + tokenizer = AutoTokenizer.from_pretrained( + args.tokenizer_name, + revision=args.revision, + use_fast=False, + ) + elif args.pretrained_model_name_or_path: + logger.info("Loading tokenizer from pretrained model", ranks=[0]) + tokenizer = AutoTokenizer.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="tokenizer", + revision=args.revision, + use_fast=False, + ) + # import correct text encoder class + text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path) + + # Load models and create wrapper for stable diffusion + + logger.info(f"Loading text_encoder from {args.pretrained_model_name_or_path}", ranks=[0]) + + text_encoder = text_encoder_cls.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="text_encoder", + revision=args.revision, + ) + + logger.info(f"Loading AutoencoderKL from {args.pretrained_model_name_or_path}", ranks=[0]) + vae = AutoencoderKL.from_pretrained( + args.pretrained_model_name_or_path, + subfolder="vae", + revision=args.revision, + ) + + logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0]) + with ColoInitContext(device=get_current_device()): + unet = UNet2DConditionModel.from_pretrained( + args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False + ) + + vae.requires_grad_(False) + text_encoder.requires_grad_(False) + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + + if args.scale_lr: + args.learning_rate = args.learning_rate * args.train_batch_size * world_size + + unet = gemini_zero_dpp(unet, args.placement) + + # config optimizer for colossalai zero + optimizer = GeminiAdamOptimizer( + unet, lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm + ) + + # load noise_scheduler + noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + + # prepare dataset + logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0]) + train_dataset = DreamBoothDataset( + instance_data_root=args.instance_data_dir, + instance_prompt=args.instance_prompt, + class_data_root=args.class_data_dir if args.with_prior_preservation else None, + class_prompt=args.class_prompt, + tokenizer=tokenizer, + size=args.resolution, + center_crop=args.center_crop, + ) + + def collate_fn(examples): + input_ids = [example["instance_prompt_ids"] for example in examples] + pixel_values = [example["instance_images"] for example in examples] + + # Concat class and instance examples for prior preservation. + # We do this to avoid doing two forward passes. + if args.with_prior_preservation: + input_ids += [example["class_prompt_ids"] for example in examples] + pixel_values += [example["class_images"] for example in examples] + + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + + input_ids = tokenizer.pad( + {"input_ids": input_ids}, + padding="max_length", + max_length=tokenizer.model_max_length, + return_tensors="pt", + ).input_ids + + batch = { + "input_ids": input_ids, + "pixel_values": pixel_values, + } + return batch + + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1 + ) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader)) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps, + num_training_steps=args.max_train_steps, + ) + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # Move text_encode and vae to gpu. + # For mixed precision training we cast the text_encoder and vae weights to half-precision + # as these models are only used for inference, keeping weights in full precision is not required. + vae.to(get_current_device(), dtype=weight_dtype) + text_encoder.to(get_current_device(), dtype=weight_dtype) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader)) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterwards we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # Train! + total_batch_size = args.train_batch_size * world_size + + logger.info("***** Running training *****", ranks=[0]) + logger.info(f" Num examples = {len(train_dataset)}", ranks=[0]) + logger.info(f" Num batches each epoch = {len(train_dataloader)}", ranks=[0]) + logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0]) + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}", ranks=[0]) + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0]) + logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0]) + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0) + progress_bar.set_description("Steps") + global_step = 0 + + torch.cuda.synchronize() + for epoch in range(args.num_train_epochs): + unet.train() + for step, batch in enumerate(train_dataloader): + torch.cuda.reset_peak_memory_stats() + # Move batch to gpu + for key, value in batch.items(): + batch[key] = value.to(get_current_device(), non_blocking=True) + + # Convert images to latent space + optimizer.zero_grad() + + latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * 0.18215 + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents) + bsz = latents.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # Get the text embedding for conditioning + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + + # Predict the noise residual + model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + if args.with_prior_preservation: + # Chunk the noise and model_pred into two parts and compute the loss on each part separately. + model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) + target, target_prior = torch.chunk(target, 2, dim=0) + + # Compute instance loss + loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() + + # Compute prior loss + prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") + + # Add the prior loss to the instance loss. + loss = loss + args.prior_loss_weight * prior_loss + else: + loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") + + optimizer.backward(loss) + + optimizer.step() + lr_scheduler.step() + logger.info(f"max GPU_mem cost is {torch.cuda.max_memory_allocated()/2**20} MB", ranks=[0]) + # Checks if the accelerator has performed an optimization step behind the scenes + progress_bar.update(1) + global_step += 1 + logs = { + "loss": loss.detach().item(), + "lr": optimizer.param_groups[0]["lr"], + } # lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + + if global_step % args.save_steps == 0: + torch.cuda.synchronize() + torch_unet = get_static_torch_model(unet) + if local_rank == 0: + pipeline = DiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=torch_unet, + revision=args.revision, + ) + save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") + pipeline.save_pretrained(save_path) + logger.info(f"Saving model checkpoint to {save_path}", ranks=[0]) + if global_step >= args.max_train_steps: + break + + torch.cuda.synchronize() + unet = get_static_torch_model(unet) + + if local_rank == 0: + pipeline = DiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=unet, + revision=args.revision, + ) + + pipeline.save_pretrained(args.output_dir) + logger.info(f"Saving model checkpoint to {args.output_dir}", ranks=[0]) + + if args.push_to_hub: + upload_folder( + repo_id=repo_id, + folder_path=args.output_dir, + commit_message="End of training", + ignore_patterns=["step_*", "epoch_*"], + ) + + +if __name__ == "__main__": + args = parse_args() + main(args) diff --git a/diffusers/examples/research_projects/dreambooth_inpaint/README.md b/diffusers/examples/research_projects/dreambooth_inpaint/README.md new file mode 100644 index 0000000000000000000000000000000000000000..dec919587935ec6e08a08e9299d62b0edc17449c --- /dev/null +++ b/diffusers/examples/research_projects/dreambooth_inpaint/README.md @@ -0,0 +1,118 @@ +# Dreambooth for the inpainting model + +This script was added by @thedarkzeno . + +Please note that this script is not actively maintained, you can open an issue and tag @thedarkzeno or @patil-suraj though. + +```bash +export MODEL_NAME="runwayml/stable-diffusion-inpainting" +export INSTANCE_DIR="path-to-instance-images" +export OUTPUT_DIR="path-to-save-model" + +accelerate launch train_dreambooth_inpaint.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --instance_data_dir=$INSTANCE_DIR \ + --output_dir=$OUTPUT_DIR \ + --instance_prompt="a photo of sks dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --gradient_accumulation_steps=1 \ + --learning_rate=5e-6 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --max_train_steps=400 +``` + +### Training with prior-preservation loss + +Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. +According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. + +```bash +export MODEL_NAME="runwayml/stable-diffusion-inpainting" +export INSTANCE_DIR="path-to-instance-images" +export CLASS_DIR="path-to-class-images" +export OUTPUT_DIR="path-to-save-model" + +accelerate launch train_dreambooth_inpaint.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --instance_data_dir=$INSTANCE_DIR \ + --class_data_dir=$CLASS_DIR \ + --output_dir=$OUTPUT_DIR \ + --with_prior_preservation --prior_loss_weight=1.0 \ + --instance_prompt="a photo of sks dog" \ + --class_prompt="a photo of dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --gradient_accumulation_steps=1 \ + --learning_rate=5e-6 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --num_class_images=200 \ + --max_train_steps=800 +``` + + +### Training with gradient checkpointing and 8-bit optimizer: + +With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU. + +To install `bitandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation). + +```bash +export MODEL_NAME="runwayml/stable-diffusion-inpainting" +export INSTANCE_DIR="path-to-instance-images" +export CLASS_DIR="path-to-class-images" +export OUTPUT_DIR="path-to-save-model" + +accelerate launch train_dreambooth_inpaint.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --instance_data_dir=$INSTANCE_DIR \ + --class_data_dir=$CLASS_DIR \ + --output_dir=$OUTPUT_DIR \ + --with_prior_preservation --prior_loss_weight=1.0 \ + --instance_prompt="a photo of sks dog" \ + --class_prompt="a photo of dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --gradient_accumulation_steps=2 --gradient_checkpointing \ + --use_8bit_adam \ + --learning_rate=5e-6 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --num_class_images=200 \ + --max_train_steps=800 +``` + +### Fine-tune text encoder with the UNet. + +The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces. +Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`. + +___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___ + +```bash +export MODEL_NAME="runwayml/stable-diffusion-inpainting" +export INSTANCE_DIR="path-to-instance-images" +export CLASS_DIR="path-to-class-images" +export OUTPUT_DIR="path-to-save-model" + +accelerate launch train_dreambooth_inpaint.py \ + --pretrained_model_name_or_path=$MODEL_NAME \ + --train_text_encoder \ + --instance_data_dir=$INSTANCE_DIR \ + --class_data_dir=$CLASS_DIR \ + --output_dir=$OUTPUT_DIR \ + --with_prior_preservation --prior_loss_weight=1.0 \ + --instance_prompt="a photo of sks dog" \ + --class_prompt="a photo of dog" \ + --resolution=512 \ + --train_batch_size=1 \ + --use_8bit_adam \ + --gradient_checkpointing \ + --learning_rate=2e-6 \ + --lr_scheduler="constant" \ + --lr_warmup_steps=0 \ + --num_class_images=200 \ + --max_train_steps=800 +``` diff --git a/diffusers/examples/research_projects/dreambooth_inpaint/requirements.txt b/diffusers/examples/research_projects/dreambooth_inpaint/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..f17dfab9653b70b379d36dae1103eb0f4728806e --- /dev/null +++ b/diffusers/examples/research_projects/dreambooth_inpaint/requirements.txt @@ -0,0 +1,7 @@ +diffusers==0.9.0 +accelerate +torchvision +transformers>=4.21.0 +ftfy +tensorboard +Jinja2 diff --git a/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint.py b/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint.py new file mode 100644 index 0000000000000000000000000000000000000000..c9b9211415b8637679dfc8e977a76661a4f1c48b --- /dev/null +++ b/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint.py @@ -0,0 +1,811 @@ +import argparse +import hashlib +import itertools +import math +import os +import random +from pathlib import Path + +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import ProjectConfiguration, set_seed +from huggingface_hub import create_repo, upload_folder +from PIL import Image, ImageDraw +from torch.utils.data import Dataset +from torchvision import transforms +from tqdm.auto import tqdm +from transformers import CLIPTextModel, CLIPTokenizer + +from diffusers import ( + AutoencoderKL, + DDPMScheduler, + StableDiffusionInpaintPipeline, + StableDiffusionPipeline, + UNet2DConditionModel, +) +from diffusers.optimization import get_scheduler +from diffusers.utils import check_min_version + + +# Will error if the minimal version of diffusers is not installed. Remove at your own risks. +check_min_version("0.13.0.dev0") + +logger = get_logger(__name__) + + +def prepare_mask_and_masked_image(image, mask): + image = np.array(image.convert("RGB")) + image = image[None].transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + + mask = np.array(mask.convert("L")) + mask = mask.astype(np.float32) / 255.0 + mask = mask[None, None] + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + + masked_image = image * (mask < 0.5) + + return mask, masked_image + + +# generate random masks +def random_mask(im_shape, ratio=1, mask_full_image=False): + mask = Image.new("L", im_shape, 0) + draw = ImageDraw.Draw(mask) + size = (random.randint(0, int(im_shape[0] * ratio)), random.randint(0, int(im_shape[1] * ratio))) + # use this to always mask the whole image + if mask_full_image: + size = (int(im_shape[0] * ratio), int(im_shape[1] * ratio)) + limits = (im_shape[0] - size[0] // 2, im_shape[1] - size[1] // 2) + center = (random.randint(size[0] // 2, limits[0]), random.randint(size[1] // 2, limits[1])) + draw_type = random.randint(0, 1) + if draw_type == 0 or mask_full_image: + draw.rectangle( + (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), + fill=255, + ) + else: + draw.ellipse( + (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), + fill=255, + ) + + return mask + + +def parse_args(): + parser = argparse.ArgumentParser(description="Simple example of a training script.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default=None, + required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--tokenizer_name", + type=str, + default=None, + help="Pretrained tokenizer name or path if not the same as model_name", + ) + parser.add_argument( + "--instance_data_dir", + type=str, + default=None, + required=True, + help="A folder containing the training data of instance images.", + ) + parser.add_argument( + "--class_data_dir", + type=str, + default=None, + required=False, + help="A folder containing the training data of class images.", + ) + parser.add_argument( + "--instance_prompt", + type=str, + default=None, + help="The prompt with identifier specifying the instance", + ) + parser.add_argument( + "--class_prompt", + type=str, + default=None, + help="The prompt to specify images in the same class as provided instance images.", + ) + parser.add_argument( + "--with_prior_preservation", + default=False, + action="store_true", + help="Flag to add prior preservation loss.", + ) + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") + parser.add_argument( + "--num_class_images", + type=int, + default=100, + help=( + "Minimal class images for prior preservation loss. If not have enough images, additional images will be" + " sampled with class_prompt." + ), + ) + parser.add_argument( + "--output_dir", + type=str, + default="text-inversion-model", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=512, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--center_crop", + default=False, + action="store_true", + help=( + "Whether to center crop the input images to the resolution. If not set, the images will be randomly" + " cropped. The images will be resized to the resolution first before cropping." + ), + ) + parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") + parser.add_argument( + "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." + ) + parser.add_argument( + "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." + ) + parser.add_argument("--num_train_epochs", type=int, default=1) + parser.add_argument( + "--max_train_steps", + type=int, + default=None, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument( + "--gradient_accumulation_steps", + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.", + ) + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + parser.add_argument( + "--learning_rate", + type=float, + default=5e-6, + help="Initial learning rate (after the potential warmup period) to use.", + ) + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." + ) + parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") + parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") + parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") + parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") + parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") + parser.add_argument( + "--hub_model_id", + type=str, + default=None, + help="The name of the repository to keep in sync with the local `output_dir`.", + ) + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU." + ), + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + parser.add_argument( + "--checkpointing_steps", + type=int, + default=500, + help=( + "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" + " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" + " using `--resume_from_checkpoint`." + ), + ) + parser.add_argument( + "--checkpoints_total_limit", + type=int, + default=None, + help=( + "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." + " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" + " for more docs" + ), + ) + parser.add_argument( + "--resume_from_checkpoint", + type=str, + default=None, + help=( + "Whether training should be resumed from a previous checkpoint. Use a path saved by" + ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' + ), + ) + + args = parser.parse_args() + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + if args.instance_data_dir is None: + raise ValueError("You must specify a train data directory.") + + if args.with_prior_preservation: + if args.class_data_dir is None: + raise ValueError("You must specify a data directory for class images.") + if args.class_prompt is None: + raise ValueError("You must specify prompt for class images.") + + return args + + +class DreamBoothDataset(Dataset): + """ + A dataset to prepare the instance and class images with the prompts for fine-tuning the model. + It pre-processes the images and the tokenizes prompts. + """ + + def __init__( + self, + instance_data_root, + instance_prompt, + tokenizer, + class_data_root=None, + class_prompt=None, + size=512, + center_crop=False, + ): + self.size = size + self.center_crop = center_crop + self.tokenizer = tokenizer + + self.instance_data_root = Path(instance_data_root) + if not self.instance_data_root.exists(): + raise ValueError("Instance images root doesn't exists.") + + self.instance_images_path = list(Path(instance_data_root).iterdir()) + self.num_instance_images = len(self.instance_images_path) + self.instance_prompt = instance_prompt + self._length = self.num_instance_images + + if class_data_root is not None: + self.class_data_root = Path(class_data_root) + self.class_data_root.mkdir(parents=True, exist_ok=True) + self.class_images_path = list(self.class_data_root.iterdir()) + self.num_class_images = len(self.class_images_path) + self._length = max(self.num_class_images, self.num_instance_images) + self.class_prompt = class_prompt + else: + self.class_data_root = None + + self.image_transforms_resize_and_crop = transforms.Compose( + [ + transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), + ] + ) + + self.image_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def __len__(self): + return self._length + + def __getitem__(self, index): + example = {} + instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) + if not instance_image.mode == "RGB": + instance_image = instance_image.convert("RGB") + instance_image = self.image_transforms_resize_and_crop(instance_image) + + example["PIL_images"] = instance_image + example["instance_images"] = self.image_transforms(instance_image) + + example["instance_prompt_ids"] = self.tokenizer( + self.instance_prompt, + padding="do_not_pad", + truncation=True, + max_length=self.tokenizer.model_max_length, + ).input_ids + + if self.class_data_root: + class_image = Image.open(self.class_images_path[index % self.num_class_images]) + if not class_image.mode == "RGB": + class_image = class_image.convert("RGB") + class_image = self.image_transforms_resize_and_crop(class_image) + example["class_images"] = self.image_transforms(class_image) + example["class_PIL_images"] = class_image + example["class_prompt_ids"] = self.tokenizer( + self.class_prompt, + padding="do_not_pad", + truncation=True, + max_length=self.tokenizer.model_max_length, + ).input_ids + + return example + + +class PromptDataset(Dataset): + "A simple dataset to prepare the prompts to generate class images on multiple GPUs." + + def __init__(self, prompt, num_samples): + self.prompt = prompt + self.num_samples = num_samples + + def __len__(self): + return self.num_samples + + def __getitem__(self, index): + example = {} + example["prompt"] = self.prompt + example["index"] = index + return example + + +def main(): + args = parse_args() + logging_dir = Path(args.output_dir, args.logging_dir) + + accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) + + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with="tensorboard", + logging_dir=logging_dir, + accelerator_project_config=accelerator_project_config, + ) + + # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate + # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. + # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. + if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: + raise ValueError( + "Gradient accumulation is not supported when training the text encoder in distributed training. " + "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." + ) + + if args.seed is not None: + set_seed(args.seed) + + if args.with_prior_preservation: + class_images_dir = Path(args.class_data_dir) + if not class_images_dir.exists(): + class_images_dir.mkdir(parents=True) + cur_class_images = len(list(class_images_dir.iterdir())) + + if cur_class_images < args.num_class_images: + torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 + pipeline = StableDiffusionInpaintPipeline.from_pretrained( + args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None + ) + pipeline.set_progress_bar_config(disable=True) + + num_new_images = args.num_class_images - cur_class_images + logger.info(f"Number of class images to sample: {num_new_images}.") + + sample_dataset = PromptDataset(args.class_prompt, num_new_images) + sample_dataloader = torch.utils.data.DataLoader( + sample_dataset, batch_size=args.sample_batch_size, num_workers=1 + ) + + sample_dataloader = accelerator.prepare(sample_dataloader) + pipeline.to(accelerator.device) + transform_to_pil = transforms.ToPILImage() + for example in tqdm( + sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process + ): + bsz = len(example["prompt"]) + fake_images = torch.rand((3, args.resolution, args.resolution)) + transform_to_pil = transforms.ToPILImage() + fake_pil_images = transform_to_pil(fake_images) + + fake_mask = random_mask((args.resolution, args.resolution), ratio=1, mask_full_image=True) + + images = pipeline(prompt=example["prompt"], mask_image=fake_mask, image=fake_pil_images).images + + for i, image in enumerate(images): + hash_image = hashlib.sha1(image.tobytes()).hexdigest() + image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" + image.save(image_filename) + + del pipeline + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + # Handle the repository creation + if accelerator.is_main_process: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + if args.push_to_hub: + repo_id = create_repo( + repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token + ).repo_id + + # Load the tokenizer + if args.tokenizer_name: + tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) + elif args.pretrained_model_name_or_path: + tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") + + # Load models and create wrapper for stable diffusion + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") + unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + vae.requires_grad_(False) + if not args.train_text_encoder: + text_encoder.requires_grad_(False) + + if args.gradient_checkpointing: + unet.enable_gradient_checkpointing() + if args.train_text_encoder: + text_encoder.gradient_checkpointing_enable() + + if args.scale_lr: + args.learning_rate = ( + args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes + ) + + # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError( + "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." + ) + + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + params_to_optimize = ( + itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters() + ) + optimizer = optimizer_class( + params_to_optimize, + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + + train_dataset = DreamBoothDataset( + instance_data_root=args.instance_data_dir, + instance_prompt=args.instance_prompt, + class_data_root=args.class_data_dir if args.with_prior_preservation else None, + class_prompt=args.class_prompt, + tokenizer=tokenizer, + size=args.resolution, + center_crop=args.center_crop, + ) + + def collate_fn(examples): + input_ids = [example["instance_prompt_ids"] for example in examples] + pixel_values = [example["instance_images"] for example in examples] + + # Concat class and instance examples for prior preservation. + # We do this to avoid doing two forward passes. + if args.with_prior_preservation: + input_ids += [example["class_prompt_ids"] for example in examples] + pixel_values += [example["class_images"] for example in examples] + pior_pil = [example["class_PIL_images"] for example in examples] + + masks = [] + masked_images = [] + for example in examples: + pil_image = example["PIL_images"] + # generate a random mask + mask = random_mask(pil_image.size, 1, False) + # prepare mask and masked image + mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) + + masks.append(mask) + masked_images.append(masked_image) + + if args.with_prior_preservation: + for pil_image in pior_pil: + # generate a random mask + mask = random_mask(pil_image.size, 1, False) + # prepare mask and masked image + mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) + + masks.append(mask) + masked_images.append(masked_image) + + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + + input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids + masks = torch.stack(masks) + masked_images = torch.stack(masked_images) + batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} + return batch + + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn + ) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, + num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, + ) + + if args.train_text_encoder: + unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, text_encoder, optimizer, train_dataloader, lr_scheduler + ) + else: + unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + unet, optimizer, train_dataloader, lr_scheduler + ) + accelerator.register_for_checkpointing(lr_scheduler) + + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # Move text_encode and vae to gpu. + # For mixed precision training we cast the text_encoder and vae weights to half-precision + # as these models are only used for inference, keeping weights in full precision is not required. + vae.to(accelerator.device, dtype=weight_dtype) + if not args.train_text_encoder: + text_encoder.to(accelerator.device, dtype=weight_dtype) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterwards we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # We need to initialize the trackers we use, and also store our configuration. + # The trackers initializes automatically on the main process. + if accelerator.is_main_process: + accelerator.init_trackers("dreambooth", config=vars(args)) + + # Train! + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(train_dataset)}") + logger.info(f" Num batches each epoch = {len(train_dataloader)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") + logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") + logger.info(f" Total optimization steps = {args.max_train_steps}") + global_step = 0 + first_epoch = 0 + + if args.resume_from_checkpoint: + if args.resume_from_checkpoint != "latest": + path = os.path.basename(args.resume_from_checkpoint) + else: + # Get the most recent checkpoint + dirs = os.listdir(args.output_dir) + dirs = [d for d in dirs if d.startswith("checkpoint")] + dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) + path = dirs[-1] if len(dirs) > 0 else None + + if path is None: + accelerator.print( + f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." + ) + args.resume_from_checkpoint = None + else: + accelerator.print(f"Resuming from checkpoint {path}") + accelerator.load_state(os.path.join(args.output_dir, path)) + global_step = int(path.split("-")[1]) + + resume_global_step = global_step * args.gradient_accumulation_steps + first_epoch = global_step // num_update_steps_per_epoch + resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) + progress_bar.set_description("Steps") + + for epoch in range(first_epoch, args.num_train_epochs): + unet.train() + for step, batch in enumerate(train_dataloader): + # Skip steps until we reach the resumed step + if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: + if step % args.gradient_accumulation_steps == 0: + progress_bar.update(1) + continue + + with accelerator.accumulate(unet): + # Convert images to latent space + + latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * vae.config.scaling_factor + + # Convert masked images to latent space + masked_latents = vae.encode( + batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) + ).latent_dist.sample() + masked_latents = masked_latents * vae.config.scaling_factor + + masks = batch["masks"] + # resize the mask to latents shape as we concatenate the mask to the latents + mask = torch.stack( + [ + torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) + for mask in masks + ] + ) + mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents) + bsz = latents.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # concatenate the noised latents with the mask and the masked latents + latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) + + # Get the text embedding for conditioning + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + + # Predict the noise residual + noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + if args.with_prior_preservation: + # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. + noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) + target, target_prior = torch.chunk(target, 2, dim=0) + + # Compute instance loss + loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() + + # Compute prior loss + prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean") + + # Add the prior loss to the instance loss. + loss = loss + args.prior_loss_weight * prior_loss + else: + loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") + + accelerator.backward(loss) + if accelerator.sync_gradients: + params_to_clip = ( + itertools.chain(unet.parameters(), text_encoder.parameters()) + if args.train_text_encoder + else unet.parameters() + ) + accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + if global_step % args.checkpointing_steps == 0: + if accelerator.is_main_process: + save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") + accelerator.save_state(save_path) + logger.info(f"Saved state to {save_path}") + + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + accelerator.wait_for_everyone() + + # Create the pipeline using using the trained modules and save it. + if accelerator.is_main_process: + pipeline = StableDiffusionPipeline.from_pretrained( + args.pretrained_model_name_or_path, + unet=accelerator.unwrap_model(unet), + text_encoder=accelerator.unwrap_model(text_encoder), + ) + pipeline.save_pretrained(args.output_dir) + + if args.push_to_hub: + upload_folder( + repo_id=repo_id, + folder_path=args.output_dir, + commit_message="End of training", + ignore_patterns=["step_*", "epoch_*"], + ) + + accelerator.end_training() + + +if __name__ == "__main__": + main() diff --git a/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint_lora.py b/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint_lora.py new file mode 100644 index 0000000000000000000000000000000000000000..0522488f2882c87bf552b8deed24c232657ed3e7 --- /dev/null +++ b/diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint_lora.py @@ -0,0 +1,830 @@ +import argparse +import hashlib +import math +import os +import random +from pathlib import Path + +import numpy as np +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from accelerate import Accelerator +from accelerate.logging import get_logger +from accelerate.utils import ProjectConfiguration, set_seed +from huggingface_hub import create_repo, upload_folder +from PIL import Image, ImageDraw +from torch.utils.data import Dataset +from torchvision import transforms +from tqdm.auto import tqdm +from transformers import CLIPTextModel, CLIPTokenizer + +from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel +from diffusers.loaders import AttnProcsLayers +from diffusers.models.attention_processor import LoRAAttnProcessor +from diffusers.optimization import get_scheduler +from diffusers.utils import check_min_version +from diffusers.utils.import_utils import is_xformers_available + + +# Will error if the minimal version of diffusers is not installed. Remove at your own risks. +check_min_version("0.13.0.dev0") + +logger = get_logger(__name__) + + +def prepare_mask_and_masked_image(image, mask): + image = np.array(image.convert("RGB")) + image = image[None].transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + + mask = np.array(mask.convert("L")) + mask = mask.astype(np.float32) / 255.0 + mask = mask[None, None] + mask[mask < 0.5] = 0 + mask[mask >= 0.5] = 1 + mask = torch.from_numpy(mask) + + masked_image = image * (mask < 0.5) + + return mask, masked_image + + +# generate random masks +def random_mask(im_shape, ratio=1, mask_full_image=False): + mask = Image.new("L", im_shape, 0) + draw = ImageDraw.Draw(mask) + size = (random.randint(0, int(im_shape[0] * ratio)), random.randint(0, int(im_shape[1] * ratio))) + # use this to always mask the whole image + if mask_full_image: + size = (int(im_shape[0] * ratio), int(im_shape[1] * ratio)) + limits = (im_shape[0] - size[0] // 2, im_shape[1] - size[1] // 2) + center = (random.randint(size[0] // 2, limits[0]), random.randint(size[1] // 2, limits[1])) + draw_type = random.randint(0, 1) + if draw_type == 0 or mask_full_image: + draw.rectangle( + (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), + fill=255, + ) + else: + draw.ellipse( + (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), + fill=255, + ) + + return mask + + +def parse_args(): + parser = argparse.ArgumentParser(description="Simple example of a training script.") + parser.add_argument( + "--pretrained_model_name_or_path", + type=str, + default=None, + required=True, + help="Path to pretrained model or model identifier from huggingface.co/models.", + ) + parser.add_argument( + "--tokenizer_name", + type=str, + default=None, + help="Pretrained tokenizer name or path if not the same as model_name", + ) + parser.add_argument( + "--instance_data_dir", + type=str, + default=None, + required=True, + help="A folder containing the training data of instance images.", + ) + parser.add_argument( + "--class_data_dir", + type=str, + default=None, + required=False, + help="A folder containing the training data of class images.", + ) + parser.add_argument( + "--instance_prompt", + type=str, + default=None, + help="The prompt with identifier specifying the instance", + ) + parser.add_argument( + "--class_prompt", + type=str, + default=None, + help="The prompt to specify images in the same class as provided instance images.", + ) + parser.add_argument( + "--with_prior_preservation", + default=False, + action="store_true", + help="Flag to add prior preservation loss.", + ) + parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") + parser.add_argument( + "--num_class_images", + type=int, + default=100, + help=( + "Minimal class images for prior preservation loss. If not have enough images, additional images will be" + " sampled with class_prompt." + ), + ) + parser.add_argument( + "--output_dir", + type=str, + default="dreambooth-inpaint-model", + help="The output directory where the model predictions and checkpoints will be written.", + ) + parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") + parser.add_argument( + "--resolution", + type=int, + default=512, + help=( + "The resolution for input images, all the images in the train/validation dataset will be resized to this" + " resolution" + ), + ) + parser.add_argument( + "--center_crop", + default=False, + action="store_true", + help=( + "Whether to center crop the input images to the resolution. If not set, the images will be randomly" + " cropped. The images will be resized to the resolution first before cropping." + ), + ) + parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") + parser.add_argument( + "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." + ) + parser.add_argument( + "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." + ) + parser.add_argument("--num_train_epochs", type=int, default=1) + parser.add_argument( + "--max_train_steps", + type=int, + default=None, + help="Total number of training steps to perform. If provided, overrides num_train_epochs.", + ) + parser.add_argument( + "--gradient_accumulation_steps", + type=int, + default=1, + help="Number of updates steps to accumulate before performing a backward/update pass.", + ) + parser.add_argument( + "--gradient_checkpointing", + action="store_true", + help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", + ) + parser.add_argument( + "--learning_rate", + type=float, + default=5e-6, + help="Initial learning rate (after the potential warmup period) to use.", + ) + parser.add_argument( + "--scale_lr", + action="store_true", + default=False, + help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", + ) + parser.add_argument( + "--lr_scheduler", + type=str, + default="constant", + help=( + 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' + ' "constant", "constant_with_warmup"]' + ), + ) + parser.add_argument( + "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." + ) + parser.add_argument( + "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." + ) + parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") + parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") + parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") + parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") + parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") + parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") + parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") + parser.add_argument( + "--hub_model_id", + type=str, + default=None, + help="The name of the repository to keep in sync with the local `output_dir`.", + ) + parser.add_argument( + "--logging_dir", + type=str, + default="logs", + help=( + "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" + " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." + ), + ) + parser.add_argument( + "--mixed_precision", + type=str, + default="no", + choices=["no", "fp16", "bf16"], + help=( + "Whether to use mixed precision. Choose" + "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." + "and an Nvidia Ampere GPU." + ), + ) + parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") + parser.add_argument( + "--checkpointing_steps", + type=int, + default=500, + help=( + "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" + " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" + " using `--resume_from_checkpoint`." + ), + ) + parser.add_argument( + "--checkpoints_total_limit", + type=int, + default=None, + help=( + "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." + " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" + " for more docs" + ), + ) + parser.add_argument( + "--resume_from_checkpoint", + type=str, + default=None, + help=( + "Whether training should be resumed from a previous checkpoint. Use a path saved by" + ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' + ), + ) + parser.add_argument( + "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." + ) + + args = parser.parse_args() + env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) + if env_local_rank != -1 and env_local_rank != args.local_rank: + args.local_rank = env_local_rank + + if args.instance_data_dir is None: + raise ValueError("You must specify a train data directory.") + + if args.with_prior_preservation: + if args.class_data_dir is None: + raise ValueError("You must specify a data directory for class images.") + if args.class_prompt is None: + raise ValueError("You must specify prompt for class images.") + + return args + + +class DreamBoothDataset(Dataset): + """ + A dataset to prepare the instance and class images with the prompts for fine-tuning the model. + It pre-processes the images and the tokenizes prompts. + """ + + def __init__( + self, + instance_data_root, + instance_prompt, + tokenizer, + class_data_root=None, + class_prompt=None, + size=512, + center_crop=False, + ): + self.size = size + self.center_crop = center_crop + self.tokenizer = tokenizer + + self.instance_data_root = Path(instance_data_root) + if not self.instance_data_root.exists(): + raise ValueError("Instance images root doesn't exists.") + + self.instance_images_path = list(Path(instance_data_root).iterdir()) + self.num_instance_images = len(self.instance_images_path) + self.instance_prompt = instance_prompt + self._length = self.num_instance_images + + if class_data_root is not None: + self.class_data_root = Path(class_data_root) + self.class_data_root.mkdir(parents=True, exist_ok=True) + self.class_images_path = list(self.class_data_root.iterdir()) + self.num_class_images = len(self.class_images_path) + self._length = max(self.num_class_images, self.num_instance_images) + self.class_prompt = class_prompt + else: + self.class_data_root = None + + self.image_transforms_resize_and_crop = transforms.Compose( + [ + transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), + transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), + ] + ) + + self.image_transforms = transforms.Compose( + [ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]), + ] + ) + + def __len__(self): + return self._length + + def __getitem__(self, index): + example = {} + instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) + if not instance_image.mode == "RGB": + instance_image = instance_image.convert("RGB") + instance_image = self.image_transforms_resize_and_crop(instance_image) + + example["PIL_images"] = instance_image + example["instance_images"] = self.image_transforms(instance_image) + + example["instance_prompt_ids"] = self.tokenizer( + self.instance_prompt, + padding="do_not_pad", + truncation=True, + max_length=self.tokenizer.model_max_length, + ).input_ids + + if self.class_data_root: + class_image = Image.open(self.class_images_path[index % self.num_class_images]) + if not class_image.mode == "RGB": + class_image = class_image.convert("RGB") + class_image = self.image_transforms_resize_and_crop(class_image) + example["class_images"] = self.image_transforms(class_image) + example["class_PIL_images"] = class_image + example["class_prompt_ids"] = self.tokenizer( + self.class_prompt, + padding="do_not_pad", + truncation=True, + max_length=self.tokenizer.model_max_length, + ).input_ids + + return example + + +class PromptDataset(Dataset): + "A simple dataset to prepare the prompts to generate class images on multiple GPUs." + + def __init__(self, prompt, num_samples): + self.prompt = prompt + self.num_samples = num_samples + + def __len__(self): + return self.num_samples + + def __getitem__(self, index): + example = {} + example["prompt"] = self.prompt + example["index"] = index + return example + + +def main(): + args = parse_args() + logging_dir = Path(args.output_dir, args.logging_dir) + + accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit) + + accelerator = Accelerator( + gradient_accumulation_steps=args.gradient_accumulation_steps, + mixed_precision=args.mixed_precision, + log_with="tensorboard", + logging_dir=logging_dir, + accelerator_project_config=accelerator_project_config, + ) + + # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate + # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. + # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. + if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: + raise ValueError( + "Gradient accumulation is not supported when training the text encoder in distributed training. " + "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." + ) + + if args.seed is not None: + set_seed(args.seed) + + if args.with_prior_preservation: + class_images_dir = Path(args.class_data_dir) + if not class_images_dir.exists(): + class_images_dir.mkdir(parents=True) + cur_class_images = len(list(class_images_dir.iterdir())) + + if cur_class_images < args.num_class_images: + torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 + pipeline = StableDiffusionInpaintPipeline.from_pretrained( + args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None + ) + pipeline.set_progress_bar_config(disable=True) + + num_new_images = args.num_class_images - cur_class_images + logger.info(f"Number of class images to sample: {num_new_images}.") + + sample_dataset = PromptDataset(args.class_prompt, num_new_images) + sample_dataloader = torch.utils.data.DataLoader( + sample_dataset, batch_size=args.sample_batch_size, num_workers=1 + ) + + sample_dataloader = accelerator.prepare(sample_dataloader) + pipeline.to(accelerator.device) + transform_to_pil = transforms.ToPILImage() + for example in tqdm( + sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process + ): + bsz = len(example["prompt"]) + fake_images = torch.rand((3, args.resolution, args.resolution)) + transform_to_pil = transforms.ToPILImage() + fake_pil_images = transform_to_pil(fake_images) + + fake_mask = random_mask((args.resolution, args.resolution), ratio=1, mask_full_image=True) + + images = pipeline(prompt=example["prompt"], mask_image=fake_mask, image=fake_pil_images).images + + for i, image in enumerate(images): + hash_image = hashlib.sha1(image.tobytes()).hexdigest() + image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" + image.save(image_filename) + + del pipeline + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + # Handle the repository creation + if accelerator.is_main_process: + if args.output_dir is not None: + os.makedirs(args.output_dir, exist_ok=True) + + if args.push_to_hub: + repo_id = create_repo( + repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token + ).repo_id + + # Load the tokenizer + if args.tokenizer_name: + tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) + elif args.pretrained_model_name_or_path: + tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") + + # Load models and create wrapper for stable diffusion + text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") + vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") + unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") + + # We only train the additional adapter LoRA layers + vae.requires_grad_(False) + text_encoder.requires_grad_(False) + unet.requires_grad_(False) + + weight_dtype = torch.float32 + if args.mixed_precision == "fp16": + weight_dtype = torch.float16 + elif args.mixed_precision == "bf16": + weight_dtype = torch.bfloat16 + + # Move text_encode and vae to gpu. + # For mixed precision training we cast the text_encoder and vae weights to half-precision + # as these models are only used for inference, keeping weights in full precision is not required. + unet.to(accelerator.device, dtype=weight_dtype) + vae.to(accelerator.device, dtype=weight_dtype) + text_encoder.to(accelerator.device, dtype=weight_dtype) + + if args.enable_xformers_memory_efficient_attention: + if is_xformers_available(): + unet.enable_xformers_memory_efficient_attention() + else: + raise ValueError("xformers is not available. Make sure it is installed correctly") + + # now we will add new LoRA weights to the attention layers + # It's important to realize here how many attention weights will be added and of which sizes + # The sizes of the attention layers consist only of two different variables: + # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. + # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. + + # Let's first see how many attention processors we will have to set. + # For Stable Diffusion, it should be equal to: + # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 + # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 + # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 + # => 32 layers + + # Set correct lora layers + lora_attn_procs = {} + for name in unet.attn_processors.keys(): + cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim + if name.startswith("mid_block"): + hidden_size = unet.config.block_out_channels[-1] + elif name.startswith("up_blocks"): + block_id = int(name[len("up_blocks.")]) + hidden_size = list(reversed(unet.config.block_out_channels))[block_id] + elif name.startswith("down_blocks"): + block_id = int(name[len("down_blocks.")]) + hidden_size = unet.config.block_out_channels[block_id] + + lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) + + unet.set_attn_processor(lora_attn_procs) + lora_layers = AttnProcsLayers(unet.attn_processors) + + accelerator.register_for_checkpointing(lora_layers) + + if args.scale_lr: + args.learning_rate = ( + args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes + ) + + # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs + if args.use_8bit_adam: + try: + import bitsandbytes as bnb + except ImportError: + raise ImportError( + "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." + ) + + optimizer_class = bnb.optim.AdamW8bit + else: + optimizer_class = torch.optim.AdamW + + optimizer = optimizer_class( + lora_layers.parameters(), + lr=args.learning_rate, + betas=(args.adam_beta1, args.adam_beta2), + weight_decay=args.adam_weight_decay, + eps=args.adam_epsilon, + ) + + noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") + + train_dataset = DreamBoothDataset( + instance_data_root=args.instance_data_dir, + instance_prompt=args.instance_prompt, + class_data_root=args.class_data_dir if args.with_prior_preservation else None, + class_prompt=args.class_prompt, + tokenizer=tokenizer, + size=args.resolution, + center_crop=args.center_crop, + ) + + def collate_fn(examples): + input_ids = [example["instance_prompt_ids"] for example in examples] + pixel_values = [example["instance_images"] for example in examples] + + # Concat class and instance examples for prior preservation. + # We do this to avoid doing two forward passes. + if args.with_prior_preservation: + input_ids += [example["class_prompt_ids"] for example in examples] + pixel_values += [example["class_images"] for example in examples] + pior_pil = [example["class_PIL_images"] for example in examples] + + masks = [] + masked_images = [] + for example in examples: + pil_image = example["PIL_images"] + # generate a random mask + mask = random_mask(pil_image.size, 1, False) + # prepare mask and masked image + mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) + + masks.append(mask) + masked_images.append(masked_image) + + if args.with_prior_preservation: + for pil_image in pior_pil: + # generate a random mask + mask = random_mask(pil_image.size, 1, False) + # prepare mask and masked image + mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) + + masks.append(mask) + masked_images.append(masked_image) + + pixel_values = torch.stack(pixel_values) + pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() + + input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids + masks = torch.stack(masks) + masked_images = torch.stack(masked_images) + batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} + return batch + + train_dataloader = torch.utils.data.DataLoader( + train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn + ) + + # Scheduler and math around the number of training steps. + overrode_max_train_steps = False + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if args.max_train_steps is None: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + overrode_max_train_steps = True + + lr_scheduler = get_scheduler( + args.lr_scheduler, + optimizer=optimizer, + num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, + num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, + ) + + # Prepare everything with our `accelerator`. + lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( + lora_layers, optimizer, train_dataloader, lr_scheduler + ) + # accelerator.register_for_checkpointing(lr_scheduler) + + # We need to recalculate our total training steps as the size of the training dataloader may have changed. + num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) + if overrode_max_train_steps: + args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch + # Afterwards we recalculate our number of training epochs + args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) + + # We need to initialize the trackers we use, and also store our configuration. + # The trackers initializes automatically on the main process. + if accelerator.is_main_process: + accelerator.init_trackers("dreambooth-inpaint-lora", config=vars(args)) + + # Train! + total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps + + logger.info("***** Running training *****") + logger.info(f" Num examples = {len(train_dataset)}") + logger.info(f" Num batches each epoch = {len(train_dataloader)}") + logger.info(f" Num Epochs = {args.num_train_epochs}") + logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") + logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") + logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") + logger.info(f" Total optimization steps = {args.max_train_steps}") + global_step = 0 + first_epoch = 0 + + if args.resume_from_checkpoint: + if args.resume_from_checkpoint != "latest": + path = os.path.basename(args.resume_from_checkpoint) + else: + # Get the most recent checkpoint + dirs = os.listdir(args.output_dir) + dirs = [d for d in dirs if d.startswith("checkpoint")] + dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) + path = dirs[-1] if len(dirs) > 0 else None + + if path is None: + accelerator.print( + f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." + ) + args.resume_from_checkpoint = None + else: + accelerator.print(f"Resuming from checkpoint {path}") + accelerator.load_state(os.path.join(args.output_dir, path)) + global_step = int(path.split("-")[1]) + + resume_global_step = global_step * args.gradient_accumulation_steps + first_epoch = global_step // num_update_steps_per_epoch + resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) + + # Only show the progress bar once on each machine. + progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) + progress_bar.set_description("Steps") + + for epoch in range(first_epoch, args.num_train_epochs): + unet.train() + for step, batch in enumerate(train_dataloader): + # Skip steps until we reach the resumed step + if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: + if step % args.gradient_accumulation_steps == 0: + progress_bar.update(1) + continue + + with accelerator.accumulate(unet): + # Convert images to latent space + + latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() + latents = latents * vae.config.scaling_factor + + # Convert masked images to latent space + masked_latents = vae.encode( + batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) + ).latent_dist.sample() + masked_latents = masked_latents * vae.config.scaling_factor + + masks = batch["masks"] + # resize the mask to latents shape as we concatenate the mask to the latents + mask = torch.stack( + [ + torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) + for mask in masks + ] + ) + mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) + + # Sample noise that we'll add to the latents + noise = torch.randn_like(latents) + bsz = latents.shape[0] + # Sample a random timestep for each image + timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) + timesteps = timesteps.long() + + # Add noise to the latents according to the noise magnitude at each timestep + # (this is the forward diffusion process) + noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) + + # concatenate the noised latents with the mask and the masked latents + latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) + + # Get the text embedding for conditioning + encoder_hidden_states = text_encoder(batch["input_ids"])[0] + + # Predict the noise residual + noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample + + # Get the target for loss depending on the prediction type + if noise_scheduler.config.prediction_type == "epsilon": + target = noise + elif noise_scheduler.config.prediction_type == "v_prediction": + target = noise_scheduler.get_velocity(latents, noise, timesteps) + else: + raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") + + if args.with_prior_preservation: + # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. + noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) + target, target_prior = torch.chunk(target, 2, dim=0) + + # Compute instance loss + loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() + + # Compute prior loss + prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean") + + # Add the prior loss to the instance loss. + loss = loss + args.prior_loss_weight * prior_loss + else: + loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") + + accelerator.backward(loss) + if accelerator.sync_gradients: + params_to_clip = lora_layers.parameters() + accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # Checks if the accelerator has performed an optimization step behind the scenes + if accelerator.sync_gradients: + progress_bar.update(1) + global_step += 1 + + if global_step % args.checkpointing_steps == 0: + if accelerator.is_main_process: + save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") + accelerator.save_state(save_path) + logger.info(f"Saved state to {save_path}") + + logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} + progress_bar.set_postfix(**logs) + accelerator.log(logs, step=global_step) + + if global_step >= args.max_train_steps: + break + + accelerator.wait_for_everyone() + + # Save the lora layers + if accelerator.is_main_process: + unet = unet.to(torch.float32) + unet.save_attn_procs(args.output_dir) + + if args.push_to_hub: + upload_folder( + repo_id=repo_id, + folder_path=args.output_dir, + commit_message="End of training", + ignore_patterns=["step_*", "epoch_*"], + ) + + accelerator.end_training() + + +if __name__ == "__main__": + main() diff --git a/diffusers/examples/research_projects/intel_opts/README.md b/diffusers/examples/research_projects/intel_opts/README.md new file mode 100644 index 0000000000000000000000000000000000000000..6b25679efbe90d556244e7aa6bee3e863c28b069 --- /dev/null +++ b/diffusers/examples/research_projects/intel_opts/README.md @@ -0,0 +1,37 @@ +## Diffusers examples with Intel optimizations + +**This research project is not actively maintained by the diffusers team. For any questions or comments, please make sure to tag @hshen14 .** + +This aims to provide diffusers examples with Intel optimizations such as Bfloat16 for training/fine-tuning acceleration and 8-bit integer (INT8) for inference acceleration on Intel platforms. + +## Accelerating the fine-tuning for textual inversion + +We accelereate the fine-tuning for textual inversion with Intel Extension for PyTorch. The [examples](textual_inversion) enable both single node and multi-node distributed training with Bfloat16 support on Intel Xeon Scalable Processor. + +## Accelerating the inference for Stable Diffusion using Bfloat16 + +We start the inference acceleration with Bfloat16 using Intel Extension for PyTorch. The [script](inference_bf16.py) is generally designed to support standard Stable Diffusion models with Bfloat16 support. +```bash +pip install diffusers transformers accelerate scipy safetensors + +export KMP_BLOCKTIME=1 +export KMP_SETTINGS=1 +export KMP_AFFINITY=granularity=fine,compact,1,0 + +# Intel OpenMP +export OMP_NUM_THREADS=< Cores to use > +export LD_PRELOAD=${LD_PRELOAD}:/path/to/lib/libiomp5.so +# Jemalloc is a recommended malloc implementation that emphasizes fragmentation avoidance and scalable concurrency support. +export LD_PRELOAD=${LD_PRELOAD}:/path/to/lib/libjemalloc.so +export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:9000000000" + +# Launch with default DDIM +numactl --membind
+
+
+
+
+
+ +🤗 Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, 🤗 Diffusers is a modular toolbox that supports both. Our library is designed with a focus on [usability over performance](https://huggingface.co/docs/diffusers/conceptual/philosophy#usability-over-performance), [simple over easy](https://huggingface.co/docs/diffusers/conceptual/philosophy#simple-over-easy), and [customizability over abstractions](https://huggingface.co/docs/diffusers/conceptual/philosophy#tweakable-contributorfriendly-over-abstraction). + +🤗 Diffusers offers three core components: + +- State-of-the-art [diffusion pipelines](https://huggingface.co/docs/diffusers/api/pipelines/overview) that can be run in inference with just a few lines of code. +- Interchangeable noise [schedulers](https://huggingface.co/docs/diffusers/api/schedulers/overview) for different diffusion speeds and output quality. +- Pretrained [models](https://huggingface.co/docs/diffusers/api/models) that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. + +## Installation + +We recommend installing 🤗 Diffusers in a virtual environment from PyPi or Conda. For more details about installing [PyTorch](https://pytorch.org/get-started/locally/) and [Flax](https://flax.readthedocs.io/en/latest/installation.html), please refer to their official documentation. + +### PyTorch + +With `pip` (official package): + +```bash +pip install --upgrade diffusers[torch] +``` + +With `conda` (maintained by the community): + +```sh +conda install -c conda-forge diffusers +``` + +### Flax + +With `pip` (official package): + +```bash +pip install --upgrade diffusers[flax] +``` + +### Apple Silicon (M1/M2) support + +Please refer to the [How to use Stable Diffusion in Apple Silicon](https://huggingface.co/docs/diffusers/optimization/mps) guide. + +## Quickstart + +Generating outputs is super easy with 🤗 Diffusers. To generate an image from text, use the `from_pretrained` method to load any pretrained diffusion model (browse the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) for 4000+ checkpoints): + +```python +from diffusers import DiffusionPipeline + +pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") +pipeline.to("cuda") +pipeline("An image of a squirrel in Picasso style").images[0] +``` + +You can also dig into the models and schedulers toolbox to build your own diffusion system: + +```python +from diffusers import DDPMScheduler, UNet2DModel +from PIL import Image +import torch +import numpy as np + +scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") +model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") +scheduler.set_timesteps(50) + +sample_size = model.config.sample_size +noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda") +input = noise + +for t in scheduler.timesteps: + with torch.no_grad(): + noisy_residual = model(input, t).sample + prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample + input = prev_noisy_sample + +image = (input / 2 + 0.5).clamp(0, 1) +image = image.cpu().permute(0, 2, 3, 1).numpy()[0] +image = Image.fromarray((image * 255).round().astype("uint8")) +image +``` + +Check out the [Quickstart](https://huggingface.co/docs/diffusers/quicktour) to launch your diffusion journey today! + +## How to navigate the documentation + +| **Documentation** | **What can I learn?** | +|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| Tutorial | A basic crash course for learning how to use the library's most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model. | +| Loading | Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers. | +| Pipelines for inference | Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library. | +| Optimization | Guides for how to optimize your diffusion model to run faster and consume less memory. | +| [Training](https://huggingface.co/docs/diffusers/training/overview) | Guides for how to train a diffusion model for different tasks with different training techniques. | + +## Supported pipelines + +| Pipeline | Paper | Tasks | +|---|---|:---:| +| [alt_diffusion](./api/pipelines/alt_diffusion) | [**AltDiffusion**](https://arxiv.org/abs/2211.06679) | Image-to-Image Text-Guided Generation | +| [audio_diffusion](./api/pipelines/audio_diffusion) | [**Audio Diffusion**](https://github.com/teticio/audio-diffusion.git) | Unconditional Audio Generation | +| [controlnet](./api/pipelines/stable_diffusion/controlnet) | [**ControlNet with Stable Diffusion**](https://arxiv.org/abs/2302.05543) | Image-to-Image Text-Guided Generation | +| [cycle_diffusion](./api/pipelines/cycle_diffusion) | [**Cycle Diffusion**](https://arxiv.org/abs/2210.05559) | Image-to-Image Text-Guided Generation | +| [dance_diffusion](./api/pipelines/dance_diffusion) | [**Dance Diffusion**](https://github.com/williamberman/diffusers.git) | Unconditional Audio Generation | +| [ddpm](./api/pipelines/ddpm) | [**Denoising Diffusion Probabilistic Models**](https://arxiv.org/abs/2006.11239) | Unconditional Image Generation | +| [ddim](./api/pipelines/ddim) | [**Denoising Diffusion Implicit Models**](https://arxiv.org/abs/2010.02502) | Unconditional Image Generation | +| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Text-to-Image Generation | +| [latent_diffusion](./api/pipelines/latent_diffusion) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)| Super Resolution Image-to-Image | +| [latent_diffusion_uncond](./api/pipelines/latent_diffusion_uncond) | [**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752) | Unconditional Image Generation | +| [paint_by_example](./api/pipelines/paint_by_example) | [**Paint by Example: Exemplar-based Image Editing with Diffusion Models**](https://arxiv.org/abs/2211.13227) | Image-Guided Image Inpainting | +| [pndm](./api/pipelines/pndm) | [**Pseudo Numerical Methods for Diffusion Models on Manifolds**](https://arxiv.org/abs/2202.09778) | Unconditional Image Generation | +| [score_sde_ve](./api/pipelines/score_sde_ve) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation | +| [score_sde_vp](./api/pipelines/score_sde_vp) | [**Score-Based Generative Modeling through Stochastic Differential Equations**](https://openreview.net/forum?id=PxTIG12RRHS) | Unconditional Image Generation | +| [semantic_stable_diffusion](./api/pipelines/semantic_stable_diffusion) | [**Semantic Guidance**](https://arxiv.org/abs/2301.12247) | Text-Guided Generation | +| [stable_diffusion_text2img](./api/pipelines/stable_diffusion/text2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-to-Image Generation | +| [stable_diffusion_img2img](./api/pipelines/stable_diffusion/img2img) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Image-to-Image Text-Guided Generation | +| [stable_diffusion_inpaint](./api/pipelines/stable_diffusion/inpaint) | [**Stable Diffusion**](https://stability.ai/blog/stable-diffusion-public-release) | Text-Guided Image Inpainting | +| [stable_diffusion_panorama](./api/pipelines/stable_diffusion/panorama) | [**MultiDiffusion**](https://multidiffusion.github.io/) | Text-to-Panorama Generation | +| [stable_diffusion_pix2pix](./api/pipelines/stable_diffusion/pix2pix) | [**InstructPix2Pix**](https://github.com/timothybrooks/instruct-pix2pix) | Text-Guided Image Editing| +| [stable_diffusion_pix2pix_zero](./api/pipelines/stable_diffusion/pix2pix_zero) | [**Zero-shot Image-to-Image Translation**](https://pix2pixzero.github.io/) | Text-Guided Image Editing | +| [stable_diffusion_attend_and_excite](./api/pipelines/stable_diffusion/attend_and_excite) | [**Attend and Excite for Stable Diffusion**](https://attendandexcite.github.io/Attend-and-Excite/) | Text-to-Image Generation | +| [stable_diffusion_self_attention_guidance](./api/pipelines/stable_diffusion/self_attention_guidance) | [**Self-Attention Guidance**](https://ku-cvlab.github.io/Self-Attention-Guidance) | Text-to-Image Generation | +| [stable_diffusion_image_variation](./stable_diffusion/image_variation) | [**Stable Diffusion Image Variations**](https://github.com/LambdaLabsML/lambda-diffusers#stable-diffusion-image-variations) | Image-to-Image Generation | +| [stable_diffusion_latent_upscale](./stable_diffusion/latent_upscale) | [**Stable Diffusion Latent Upscaler**](https://twitter.com/StabilityAI/status/1590531958815064065) | Text-Guided Super Resolution Image-to-Image | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-to-Image Generation | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Image Inpainting | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Depth-Conditional Stable Diffusion**](https://github.com/Stability-AI/stablediffusion#depth-conditional-stable-diffusion) | Depth-to-Image Generation | +| [stable_diffusion_2](./api/pipelines/stable_diffusion_2) | [**Stable Diffusion 2**](https://stability.ai/blog/stable-diffusion-v2-release) | Text-Guided Super Resolution Image-to-Image | +| [stable_diffusion_safe](./api/pipelines/stable_diffusion_safe) | [**Safe Stable Diffusion**](https://arxiv.org/abs/2211.05105) | Text-Guided Generation | +| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Text-to-Image Generation | +| [stable_unclip](./stable_unclip) | **Stable unCLIP** | Image-to-Image Text-Guided Generation | +| [stochastic_karras_ve](./api/pipelines/stochastic_karras_ve) | [**Elucidating the Design Space of Diffusion-Based Generative Models**](https://arxiv.org/abs/2206.00364) | Unconditional Image Generation | +| [unclip](./api/pipelines/unclip) | [Hierarchical Text-Conditional Image Generation with CLIP Latents](https://arxiv.org/abs/2204.06125) | Text-to-Image Generation | +| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Text-to-Image Generation | +| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Image Variations Generation | +| [versatile_diffusion](./api/pipelines/versatile_diffusion) | [Versatile Diffusion: Text, Images and Variations All in One Diffusion Model](https://arxiv.org/abs/2211.08332) | Dual Image and Text Guided Generation | +| [vq_diffusion](./api/pipelines/vq_diffusion) | [Vector Quantized Diffusion Model for Text-to-Image Synthesis](https://arxiv.org/abs/2111.14822) | Text-to-Image Generation | + +## Contribution + +We ❤️ contributions from the open-source community! +If you want to contribute to this library, please check out our [Contribution guide](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md). +You can look out for [issues](https://github.com/huggingface/diffusers/issues) you'd like to tackle to contribute to the library. +- See [Good first issues](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) for general opportunities to contribute +- See [New model/pipeline](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+pipeline%2Fmodel%22) to contribute exciting new diffusion models / diffusion pipelines +- See [New scheduler](https://github.com/huggingface/diffusers/issues?q=is%3Aopen+is%3Aissue+label%3A%22New+scheduler%22) + +Also, say 👋 in our public Discord channel . We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or +just hang out ☕. + +## Credits + +This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today: + +- @CompVis' latent diffusion models library, available [here](https://github.com/CompVis/latent-diffusion) +- @hojonathanho original DDPM implementation, available [here](https://github.com/hojonathanho/diffusion) as well as the extremely useful translation into PyTorch by @pesser, available [here](https://github.com/pesser/pytorch_diffusion) +- @ermongroup's DDIM implementation, available [here](https://github.com/ermongroup/ddim) +- @yang-song's Score-VE and Score-VP implementations, available [here](https://github.com/yang-song/score_sde_pytorch) + +We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available [here](https://github.com/heejkoo/Awesome-Diffusion-Models) as well as @crowsonkb and @rromb for useful discussions and insights. + +## Citation + +```bibtex +@misc{von-platen-etal-2022-diffusers, + author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Thomas Wolf}, + title = {Diffusers: State-of-the-art diffusion models}, + year = {2022}, + publisher = {GitHub}, + journal = {GitHub repository}, + howpublished = {\url{https://github.com/huggingface/diffusers}} +} +``` diff --git a/diffusers/src/diffusers.egg-info/SOURCES.txt b/diffusers/src/diffusers.egg-info/SOURCES.txt new file mode 100644 index 0000000000000000000000000000000000000000..3a9909157e907b4eaaa7b00d9e992e8ee1217e28 --- /dev/null +++ b/diffusers/src/diffusers.egg-info/SOURCES.txt @@ -0,0 +1,226 @@ +LICENSE +MANIFEST.in +README.md +pyproject.toml +setup.cfg +setup.py +src/diffusers/__init__.py +src/diffusers/configuration_utils.py +src/diffusers/dependency_versions_check.py +src/diffusers/dependency_versions_table.py +src/diffusers/image_processor.py +src/diffusers/loaders.py +src/diffusers/optimization.py +src/diffusers/pipeline_utils.py +src/diffusers/training_utils.py +src/diffusers.egg-info/PKG-INFO +src/diffusers.egg-info/SOURCES.txt +src/diffusers.egg-info/dependency_links.txt +src/diffusers.egg-info/entry_points.txt +src/diffusers.egg-info/requires.txt +src/diffusers.egg-info/top_level.txt +src/diffusers/commands/__init__.py +src/diffusers/commands/diffusers_cli.py +src/diffusers/commands/env.py +src/diffusers/experimental/__init__.py +src/diffusers/experimental/rl/__init__.py +src/diffusers/experimental/rl/value_guided_sampling.py +src/diffusers/models/__init__.py +src/diffusers/models/attention.py +src/diffusers/models/attention_flax.py +src/diffusers/models/attention_processor.py +src/diffusers/models/autoencoder_kl.py +src/diffusers/models/controlnet.py +src/diffusers/models/controlnet_flax.py +src/diffusers/models/cross_attention.py +src/diffusers/models/dual_transformer_2d.py +src/diffusers/models/embeddings.py +src/diffusers/models/embeddings_flax.py +src/diffusers/models/modeling_flax_pytorch_utils.py +src/diffusers/models/modeling_flax_utils.py +src/diffusers/models/modeling_pytorch_flax_utils.py +src/diffusers/models/modeling_utils.py +src/diffusers/models/prior_transformer.py +src/diffusers/models/resnet.py +src/diffusers/models/resnet_flax.py +src/diffusers/models/t5_film_transformer.py +src/diffusers/models/transformer_2d.py +src/diffusers/models/transformer_temporal.py +src/diffusers/models/unet_1d.py +src/diffusers/models/unet_1d_blocks.py +src/diffusers/models/unet_2d.py +src/diffusers/models/unet_2d_blocks.py +src/diffusers/models/unet_2d_blocks_flax.py +src/diffusers/models/unet_2d_condition.py +src/diffusers/models/unet_2d_condition_flax.py +src/diffusers/models/unet_3d_blocks.py +src/diffusers/models/unet_3d_condition.py +src/diffusers/models/vae.py +src/diffusers/models/vae_flax.py +src/diffusers/models/vq_model.py +src/diffusers/pipelines/__init__.py +src/diffusers/pipelines/onnx_utils.py +src/diffusers/pipelines/pipeline_flax_utils.py +src/diffusers/pipelines/pipeline_utils.py +src/diffusers/pipelines/alt_diffusion/__init__.py +src/diffusers/pipelines/alt_diffusion/modeling_roberta_series.py +src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion.py +src/diffusers/pipelines/alt_diffusion/pipeline_alt_diffusion_img2img.py +src/diffusers/pipelines/audio_diffusion/__init__.py +src/diffusers/pipelines/audio_diffusion/mel.py +src/diffusers/pipelines/audio_diffusion/pipeline_audio_diffusion.py +src/diffusers/pipelines/audioldm/__init__.py +src/diffusers/pipelines/audioldm/pipeline_audioldm.py +src/diffusers/pipelines/dance_diffusion/__init__.py +src/diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +src/diffusers/pipelines/ddim/__init__.py +src/diffusers/pipelines/ddim/pipeline_ddim.py +src/diffusers/pipelines/ddpm/__init__.py +src/diffusers/pipelines/ddpm/pipeline_ddpm.py +src/diffusers/pipelines/dit/__init__.py +src/diffusers/pipelines/dit/pipeline_dit.py +src/diffusers/pipelines/latent_diffusion/__init__.py +src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion_superresolution.py +src/diffusers/pipelines/latent_diffusion_uncond/__init__.py +src/diffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +src/diffusers/pipelines/paint_by_example/__init__.py +src/diffusers/pipelines/paint_by_example/image_encoder.py +src/diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +src/diffusers/pipelines/pndm/__init__.py +src/diffusers/pipelines/pndm/pipeline_pndm.py +src/diffusers/pipelines/repaint/__init__.py +src/diffusers/pipelines/repaint/pipeline_repaint.py +src/diffusers/pipelines/score_sde_ve/__init__.py +src/diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py +src/diffusers/pipelines/semantic_stable_diffusion/__init__.py +src/diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +src/diffusers/pipelines/spectrogram_diffusion/__init__.py +src/diffusers/pipelines/spectrogram_diffusion/continous_encoder.py +src/diffusers/pipelines/spectrogram_diffusion/midi_utils.py +src/diffusers/pipelines/spectrogram_diffusion/notes_encoder.py +src/diffusers/pipelines/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +src/diffusers/pipelines/stable_diffusion/__init__.py +src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +src/diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py +src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_controlnet.py +src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint_legacy.py +src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_attend_and_excite.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_k_diffusion.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_model_editing.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_panorama.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_pix2pix_zero.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_sag.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +src/diffusers/pipelines/stable_diffusion/safety_checker.py +src/diffusers/pipelines/stable_diffusion/safety_checker_flax.py +src/diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +src/diffusers/pipelines/stable_diffusion_safe/__init__.py +src/diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py +src/diffusers/pipelines/stochastic_karras_ve/__init__.py +src/diffusers/pipelines/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +src/diffusers/pipelines/text_to_video_synthesis/__init__.py +src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +src/diffusers/pipelines/unclip/__init__.py +src/diffusers/pipelines/unclip/pipeline_unclip.py +src/diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +src/diffusers/pipelines/unclip/text_proj.py +src/diffusers/pipelines/versatile_diffusion/__init__.py +src/diffusers/pipelines/versatile_diffusion/modeling_text_unet.py +src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion.py +src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +src/diffusers/pipelines/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +src/diffusers/pipelines/vq_diffusion/__init__.py +src/diffusers/pipelines/vq_diffusion/pipeline_vq_diffusion.py +src/diffusers/schedulers/__init__.py +src/diffusers/schedulers/scheduling_ddim.py +src/diffusers/schedulers/scheduling_ddim_flax.py +src/diffusers/schedulers/scheduling_ddim_inverse.py +src/diffusers/schedulers/scheduling_ddpm.py +src/diffusers/schedulers/scheduling_ddpm_flax.py +src/diffusers/schedulers/scheduling_deis_multistep.py +src/diffusers/schedulers/scheduling_dpmsolver_multistep.py +src/diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py +src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py +src/diffusers/schedulers/scheduling_euler_discrete.py +src/diffusers/schedulers/scheduling_heun_discrete.py +src/diffusers/schedulers/scheduling_ipndm.py +src/diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py +src/diffusers/schedulers/scheduling_karras_ve.py +src/diffusers/schedulers/scheduling_karras_ve_flax.py +src/diffusers/schedulers/scheduling_lms_discrete.py +src/diffusers/schedulers/scheduling_lms_discrete_flax.py +src/diffusers/schedulers/scheduling_pndm.py +src/diffusers/schedulers/scheduling_pndm_flax.py +src/diffusers/schedulers/scheduling_repaint.py +src/diffusers/schedulers/scheduling_sde_ve.py +src/diffusers/schedulers/scheduling_sde_ve_flax.py +src/diffusers/schedulers/scheduling_sde_vp.py +src/diffusers/schedulers/scheduling_unclip.py +src/diffusers/schedulers/scheduling_unipc_multistep.py +src/diffusers/schedulers/scheduling_utils.py +src/diffusers/schedulers/scheduling_utils_flax.py +src/diffusers/schedulers/scheduling_vq_diffusion.py +src/diffusers/utils/__init__.py +src/diffusers/utils/accelerate_utils.py +src/diffusers/utils/constants.py +src/diffusers/utils/deprecation_utils.py +src/diffusers/utils/doc_utils.py +src/diffusers/utils/dummy_flax_and_transformers_objects.py +src/diffusers/utils/dummy_flax_objects.py +src/diffusers/utils/dummy_note_seq_objects.py +src/diffusers/utils/dummy_onnx_objects.py +src/diffusers/utils/dummy_pt_objects.py +src/diffusers/utils/dummy_torch_and_librosa_objects.py +src/diffusers/utils/dummy_torch_and_scipy_objects.py +src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py +src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py +src/diffusers/utils/dummy_torch_and_transformers_objects1.py +src/diffusers/utils/dummy_transformers_and_torch_and_note_seq_objects.py +src/diffusers/utils/dynamic_modules_utils.py +src/diffusers/utils/hub_utils.py +src/diffusers/utils/import_utils.py +src/diffusers/utils/logging.py +src/diffusers/utils/model_card_template.md +src/diffusers/utils/outputs.py +src/diffusers/utils/pil_utils.py +src/diffusers/utils/testing_utils.py +src/diffusers/utils/torch_utils.py +tests/test_config.py +tests/test_ema.py +tests/test_hub_utils.py +tests/test_image_processor.py +tests/test_layers_utils.py +tests/test_modeling_common.py +tests/test_modeling_common_flax.py +tests/test_outputs.py +tests/test_pipelines.py +tests/test_pipelines_common.py +tests/test_pipelines_flax.py +tests/test_pipelines_onnx_common.py +tests/test_training.py +tests/test_unet_2d_blocks.py +tests/test_unet_blocks_common.py +tests/test_utils.py \ No newline at end of file diff --git a/diffusers/src/diffusers.egg-info/dependency_links.txt b/diffusers/src/diffusers.egg-info/dependency_links.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc --- /dev/null +++ b/diffusers/src/diffusers.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/diffusers/src/diffusers.egg-info/entry_points.txt b/diffusers/src/diffusers.egg-info/entry_points.txt new file mode 100644 index 0000000000000000000000000000000000000000..4d8cdefa4968bbed7a122fa7a34940bf9a15360b --- /dev/null +++ b/diffusers/src/diffusers.egg-info/entry_points.txt @@ -0,0 +1,2 @@ +[console_scripts] +diffusers-cli = diffusers.commands.diffusers_cli:main diff --git a/diffusers/src/diffusers.egg-info/requires.txt b/diffusers/src/diffusers.egg-info/requires.txt new file mode 100644 index 0000000000000000000000000000000000000000..ae96abe9a73c49cf8595a83b99ffa7b45a6c960b --- /dev/null +++ b/diffusers/src/diffusers.egg-info/requires.txt @@ -0,0 +1,79 @@ +importlib_metadata +filelock +huggingface-hub>=0.13.2 +numpy +regex!=2019.12.17 +requests +Pillow + +[dev] +black~=23.1 +isort>=5.5.4 +ruff>=0.0.241 +hf-doc-builder>=0.3.0 +compel==0.1.8 +datasets +Jinja2 +k-diffusion>=0.0.12 +librosa +note-seq +parameterized +pytest +pytest-timeout +pytest-xdist +requests-mock==1.10.0 +safetensors +sentencepiece!=0.1.92,>=0.1.91 +scipy +torchvision +transformers>=4.25.1 +accelerate>=0.11.0 +protobuf<4,>=3.20.3 +tensorboard +torch>=1.4 +jax!=0.3.2,>=0.2.8 +jaxlib>=0.1.65 +flax>=0.4.1 + +[docs] +hf-doc-builder>=0.3.0 + +[flax] +jax!=0.3.2,>=0.2.8 +jaxlib>=0.1.65 +flax>=0.4.1 + +[quality] +black~=23.1 +isort>=5.5.4 +ruff>=0.0.241 +hf-doc-builder>=0.3.0 + +[test] +compel==0.1.8 +datasets +Jinja2 +k-diffusion>=0.0.12 +librosa +note-seq +parameterized +pytest +pytest-timeout +pytest-xdist +requests-mock==1.10.0 +safetensors +sentencepiece!=0.1.92,>=0.1.91 +scipy +torchvision +transformers>=4.25.1 + +[torch] +torch>=1.4 +accelerate>=0.11.0 + +[training] +accelerate>=0.11.0 +datasets +protobuf<4,>=3.20.3 +tensorboard +Jinja2 diff --git a/diffusers/src/diffusers.egg-info/top_level.txt b/diffusers/src/diffusers.egg-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..6033efb6dbaaff9bc81792fd75a6b39d9f195aeb --- /dev/null +++ b/diffusers/src/diffusers.egg-info/top_level.txt @@ -0,0 +1 @@ +diffusers diff --git a/diffusers/src/diffusers/.ipynb_checkpoints/pipeline_utils-checkpoint.py b/diffusers/src/diffusers/.ipynb_checkpoints/pipeline_utils-checkpoint.py new file mode 100644 index 0000000000000000000000000000000000000000..5c0c2337dc048dd9ef164ac5cb92e4bf5e62d764 --- /dev/null +++ b/diffusers/src/diffusers/.ipynb_checkpoints/pipeline_utils-checkpoint.py @@ -0,0 +1,19 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and + +# limitations under the License. + +# NOTE: This file is deprecated and will be removed in a future version. +# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works + +from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 diff --git a/diffusers/src/diffusers/__init__.py b/diffusers/src/diffusers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f8ac91c0eb95fffec92f57a658622ce5702a3d24 --- /dev/null +++ b/diffusers/src/diffusers/__init__.py @@ -0,0 +1,230 @@ +__version__ = "0.15.0.dev0" + +from .configuration_utils import ConfigMixin +from .utils import ( + OptionalDependencyNotAvailable, + is_flax_available, + is_inflect_available, + is_k_diffusion_available, + is_k_diffusion_version, + is_librosa_available, + is_note_seq_available, + is_onnx_available, + is_scipy_available, + is_torch_available, + is_transformers_available, + is_transformers_version, + is_unidecode_available, + logging, +) + + +try: + if not is_onnx_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_onnx_objects import * # noqa F403 +else: + from .pipelines import OnnxRuntimeModel + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_pt_objects import * # noqa F403 +else: + from .models import ( + AutoencoderKL, + ControlNetModel, + ModelMixin, + PriorTransformer, + T5FilmDecoder, + Transformer2DModel, + UNet1DModel, + UNet2DConditionModel, + UNet2DModel, + UNet3DConditionModel, + VQModel, + ) + from .optimization import ( + get_constant_schedule, + get_constant_schedule_with_warmup, + get_cosine_schedule_with_warmup, + get_cosine_with_hard_restarts_schedule_with_warmup, + get_linear_schedule_with_warmup, + get_polynomial_decay_schedule_with_warmup, + get_scheduler, + ) + from .pipelines import ( + AudioPipelineOutput, + DanceDiffusionPipeline, + DDIMPipeline, + DDPMPipeline, + DiffusionPipeline, + DiTPipeline, + ImagePipelineOutput, + KarrasVePipeline, + LDMPipeline, + LDMSuperResolutionPipeline, + PNDMPipeline, + RePaintPipeline, + ScoreSdeVePipeline, + ) + from .schedulers import ( + DDIMInverseScheduler, + DDIMScheduler, + DDPMScheduler, + DEISMultistepScheduler, + DPMSolverMultistepScheduler, + DPMSolverSinglestepScheduler, + EulerAncestralDiscreteScheduler, + EulerDiscreteScheduler, + HeunDiscreteScheduler, + IPNDMScheduler, + KarrasVeScheduler, + KDPM2AncestralDiscreteScheduler, + KDPM2DiscreteScheduler, + PNDMScheduler, + RePaintScheduler, + SchedulerMixin, + ScoreSdeVeScheduler, + UnCLIPScheduler, + UniPCMultistepScheduler, + VQDiffusionScheduler, + ) + from .training_utils import EMAModel + +try: + if not (is_torch_available() and is_scipy_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_scipy_objects import * # noqa F403 +else: + from .schedulers import LMSDiscreteScheduler + + +try: + if not (is_torch_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_objects import * # noqa F403 +else: + from .loaders import TextualInversionLoaderMixin + from .pipelines import ( + AltDiffusionImg2ImgPipeline, + AltDiffusionPipeline, + AudioLDMPipeline, + CycleDiffusionPipeline, + LDMTextToImagePipeline, + PaintByExamplePipeline, + SemanticStableDiffusionPipeline, + StableDiffusionAttendAndExcitePipeline, + StableDiffusionControlNetPipeline, + StableDiffusionDepth2ImgPipeline, + StableDiffusionImageVariationPipeline, + StableDiffusionImg2ImgPipeline, + StableDiffusionInpaintPipeline, + StableDiffusionInpaintPipelineLegacy, + StableDiffusionInstructPix2PixPipeline, + StableDiffusionLatentUpscalePipeline, + StableDiffusionModelEditingPipeline, + StableDiffusionPanoramaPipeline, + StableDiffusionPipeline, + StableDiffusionPipelineSafe, + StableDiffusionPix2PixZeroPipeline, + StableDiffusionSAGPipeline, + StableDiffusionUpscalePipeline, + StableUnCLIPImg2ImgPipeline, + StableUnCLIPPipeline, + TextToVideoSDPipeline, + UnCLIPImageVariationPipeline, + UnCLIPPipeline, + VersatileDiffusionDualGuidedPipeline, + VersatileDiffusionImageVariationPipeline, + VersatileDiffusionPipeline, + VersatileDiffusionTextToImagePipeline, + VQDiffusionPipeline, + ) + +try: + if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 +else: + from .pipelines import StableDiffusionKDiffusionPipeline + +try: + if not (is_torch_available() and is_transformers_available() and is_onnx_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 +else: + from .pipelines import ( + OnnxStableDiffusionImg2ImgPipeline, + OnnxStableDiffusionInpaintPipeline, + OnnxStableDiffusionInpaintPipelineLegacy, + OnnxStableDiffusionPipeline, + OnnxStableDiffusionUpscalePipeline, + StableDiffusionOnnxPipeline, + ) + +try: + if not (is_torch_available() and is_librosa_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_torch_and_librosa_objects import * # noqa F403 +else: + from .pipelines import AudioDiffusionPipeline, Mel + +try: + if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 +else: + from .pipelines import SpectrogramDiffusionPipeline + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_flax_objects import * # noqa F403 +else: + from .models.controlnet_flax import FlaxControlNetModel + from .models.modeling_flax_utils import FlaxModelMixin + from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel + from .models.vae_flax import FlaxAutoencoderKL + from .pipelines import FlaxDiffusionPipeline + from .schedulers import ( + FlaxDDIMScheduler, + FlaxDDPMScheduler, + FlaxDPMSolverMultistepScheduler, + FlaxKarrasVeScheduler, + FlaxLMSDiscreteScheduler, + FlaxPNDMScheduler, + FlaxSchedulerMixin, + FlaxScoreSdeVeScheduler, + ) + + +try: + if not (is_flax_available() and is_transformers_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_flax_and_transformers_objects import * # noqa F403 +else: + from .pipelines import ( + FlaxStableDiffusionControlNetPipeline, + FlaxStableDiffusionImg2ImgPipeline, + FlaxStableDiffusionInpaintPipeline, + FlaxStableDiffusionPipeline, + ) + +try: + if not (is_note_seq_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from .utils.dummy_note_seq_objects import * # noqa F403 +else: + from .pipelines import MidiProcessor diff --git a/diffusers/src/diffusers/__pycache__/__init__.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..239da5c5f258cf51ce2f7f56dc74f58805e795f1 Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/__init__.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/__pycache__/configuration_utils.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/configuration_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ec0585204a7dc4a3fc169b3842c704edc460360 Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/configuration_utils.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/__pycache__/image_processor.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/image_processor.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a400d514d27ed4d9d3b495a6fd9deca91a95c8b Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/image_processor.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/__pycache__/loaders.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/loaders.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b87f11a64bda0f10d37bcae1d2b0348cc6cb961 Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/loaders.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/__pycache__/optimization.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/optimization.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b98f80d8e52625373bb877e35ef992471709ceb6 Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/optimization.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54a94cf354ca828515b250eb398d4198c36ecbbc Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/pipeline_utils.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/__pycache__/training_utils.cpython-39.pyc b/diffusers/src/diffusers/__pycache__/training_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..462f5fcec9bc22c97a976902e68ff8075736adcb Binary files /dev/null and b/diffusers/src/diffusers/__pycache__/training_utils.cpython-39.pyc differ diff --git a/diffusers/src/diffusers/commands/__init__.py b/diffusers/src/diffusers/commands/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4ad4af9199bbe297dbc6679fd9ecb46baa976053 --- /dev/null +++ b/diffusers/src/diffusers/commands/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from abc import ABC, abstractmethod +from argparse import ArgumentParser + + +class BaseDiffusersCLICommand(ABC): + @staticmethod + @abstractmethod + def register_subcommand(parser: ArgumentParser): + raise NotImplementedError() + + @abstractmethod + def run(self): + raise NotImplementedError() diff --git a/diffusers/src/diffusers/commands/diffusers_cli.py b/diffusers/src/diffusers/commands/diffusers_cli.py new file mode 100644 index 0000000000000000000000000000000000000000..74ad29a786d7f77e982242d7020170cb4d031c41 --- /dev/null +++ b/diffusers/src/diffusers/commands/diffusers_cli.py @@ -0,0 +1,41 @@ +#!/usr/bin/env python +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from argparse import ArgumentParser + +from .env import EnvironmentCommand + + +def main(): + parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli