Spaces:
Running
on
Zero
Running
on
Zero
feature: deploying space with quantified Latte-1 model for lowVram cards.
Browse files- app.py +149 -4
- package.txt +1 -0
- requirements.txt +39 -0
app.py
CHANGED
@@ -1,7 +1,152 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
+
from diffusers import LattePipeline
|
6 |
+
from transformers import T5EncoderModel, BitsAndBytesConfig
|
7 |
+
import imageio
|
8 |
+
from torchvision.utils import save_image
|
9 |
|
10 |
+
def flush():
|
11 |
+
gc.collect()
|
12 |
+
torch.cuda.empty_cache()
|
13 |
|
14 |
+
def bytes_to_giga_bytes(bytes):
|
15 |
+
return bytes / 1024 / 1024 / 1024
|
16 |
+
|
17 |
+
def initialize_pipeline():
|
18 |
+
model_id = "maxin-cn/Latte-1"
|
19 |
+
|
20 |
+
text_encoder = T5EncoderModel.from_pretrained(
|
21 |
+
model_id,
|
22 |
+
subfolder="text_encoder",
|
23 |
+
quantization_config=BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16),
|
24 |
+
device_map="auto",
|
25 |
+
)
|
26 |
+
|
27 |
+
pipe = LattePipeline.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
text_encoder=text_encoder,
|
30 |
+
transformer=None,
|
31 |
+
device_map="balanced",
|
32 |
+
)
|
33 |
+
return pipe, text_encoder
|
34 |
+
|
35 |
+
def generate_video(
|
36 |
+
prompt: str,
|
37 |
+
negative_prompt: str = "",
|
38 |
+
video_length: int = 16,
|
39 |
+
num_inference_steps: int = 50,
|
40 |
+
progress=gr.Progress()
|
41 |
+
):
|
42 |
+
# Set random seed for reproducibility
|
43 |
+
torch.manual_seed(0)
|
44 |
+
|
45 |
+
# Initialize the pipeline
|
46 |
+
progress(0, desc="Initializing pipeline...")
|
47 |
+
pipe, text_encoder = initialize_pipeline()
|
48 |
+
|
49 |
+
# Generate prompt embeddings
|
50 |
+
progress(0.2, desc="Encoding prompt...")
|
51 |
+
with torch.no_grad():
|
52 |
+
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(
|
53 |
+
prompt,
|
54 |
+
negative_prompt=negative_prompt
|
55 |
+
)
|
56 |
+
|
57 |
+
# Clean up first pipeline
|
58 |
+
progress(0.3, desc="Cleaning up...")
|
59 |
+
del text_encoder
|
60 |
+
del pipe
|
61 |
+
flush()
|
62 |
+
|
63 |
+
# Initialize the second pipeline
|
64 |
+
progress(0.4, desc="Initializing generation pipeline...")
|
65 |
+
pipe = LattePipeline.from_pretrained(
|
66 |
+
"maxin-cn/Latte-1",
|
67 |
+
text_encoder=None,
|
68 |
+
torch_dtype=torch.float16,
|
69 |
+
).to("cuda")
|
70 |
+
|
71 |
+
# Generate video
|
72 |
+
progress(0.5, desc="Generating video...")
|
73 |
+
videos = pipe(
|
74 |
+
video_length=video_length,
|
75 |
+
num_inference_steps=num_inference_steps,
|
76 |
+
negative_prompt=None,
|
77 |
+
prompt_embeds=prompt_embeds,
|
78 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
79 |
+
output_type="pt",
|
80 |
+
).frames.cpu()
|
81 |
+
|
82 |
+
progress(0.8, desc="Post-processing...")
|
83 |
+
# Convert to video format
|
84 |
+
videos = (videos.clamp(0, 1) * 255).to(dtype=torch.uint8)
|
85 |
+
|
86 |
+
# Save temporary file
|
87 |
+
temp_output = "temp_output.mp4"
|
88 |
+
imageio.mimwrite(
|
89 |
+
temp_output,
|
90 |
+
videos[0].permute(0, 2, 3, 1),
|
91 |
+
fps=8,
|
92 |
+
quality=5
|
93 |
+
)
|
94 |
+
|
95 |
+
# Clean up
|
96 |
+
progress(0.9, desc="Cleaning up...")
|
97 |
+
del pipe
|
98 |
+
flush()
|
99 |
+
|
100 |
+
progress(1.0, desc="Done!")
|
101 |
+
return temp_output
|
102 |
+
|
103 |
+
def create_demo():
|
104 |
+
with gr.Blocks() as demo:
|
105 |
+
gr.Markdown("""
|
106 |
+
# Latte Video Generation
|
107 |
+
Generate short videos using the Latte-1 model.
|
108 |
+
""")
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
with gr.Column():
|
112 |
+
prompt = gr.Textbox(
|
113 |
+
label="Prompt",
|
114 |
+
value="a cat wearing sunglasses and working as a lifeguard at pool.",
|
115 |
+
info="Describe what you want to generate"
|
116 |
+
)
|
117 |
+
negative_prompt = gr.Textbox(
|
118 |
+
label="Negative Prompt",
|
119 |
+
value="",
|
120 |
+
info="What you don't want to see in the generation"
|
121 |
+
)
|
122 |
+
video_length = gr.Slider(
|
123 |
+
minimum=8,
|
124 |
+
maximum=32,
|
125 |
+
step=8,
|
126 |
+
value=16,
|
127 |
+
label="Video Length (frames)"
|
128 |
+
)
|
129 |
+
steps = gr.Slider(
|
130 |
+
minimum=20,
|
131 |
+
maximum=100,
|
132 |
+
step=10,
|
133 |
+
value=50,
|
134 |
+
label="Number of Inference Steps"
|
135 |
+
)
|
136 |
+
generate_btn = gr.Button("Generate Video")
|
137 |
+
|
138 |
+
with gr.Column():
|
139 |
+
output_video = gr.Video(label="Generated Video")
|
140 |
+
|
141 |
+
generate_btn.click(
|
142 |
+
fn=generate_video,
|
143 |
+
inputs=[prompt, negative_prompt, video_length, steps],
|
144 |
+
outputs=output_video
|
145 |
+
)
|
146 |
+
|
147 |
+
return demo
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
demo = create_demo()
|
151 |
+
demo.queue()
|
152 |
+
demo.launch(share=False)
|
package.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-U --extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
torchaudio
|
5 |
+
timm
|
6 |
+
pytorch-cuda>=11.8
|
7 |
+
diffusers[torch]
|
8 |
+
cmake
|
9 |
+
ninja
|
10 |
+
accelerate
|
11 |
+
tensorboard
|
12 |
+
pillow
|
13 |
+
einops
|
14 |
+
transformers
|
15 |
+
av
|
16 |
+
scikit-image
|
17 |
+
decord
|
18 |
+
pandas
|
19 |
+
imageio
|
20 |
+
imageio-ffmpeg
|
21 |
+
sentencepiece
|
22 |
+
beautifulsoup4
|
23 |
+
ftfy
|
24 |
+
omegaconf
|
25 |
+
gradio
|
26 |
+
imageio
|
27 |
+
imageio-ffmpeg
|
28 |
+
bitsandbytes
|
29 |
+
xformers
|
30 |
+
setuptools
|
31 |
+
pip
|
32 |
+
wheel
|
33 |
+
triton
|
34 |
+
spaces
|
35 |
+
huggingface-hub
|
36 |
+
numpy
|
37 |
+
matplotlib
|
38 |
+
lit
|
39 |
+
pybind11
|