ml-mgie / mgie_llava.py
tsujuifu's picture
update v2
893b461
raw
history blame
20.4 kB
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/model/llava.py
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM, \
CLIPVisionModel, CLIPImageProcessor
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
import os, diffusers
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
class LlavaConfig(LlamaConfig):
model_type = "llava"
class LlavaLlamaModel(LlamaModel):
config_class = LlavaConfig
def __init__(self, config: LlamaConfig):
super(LlavaLlamaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
# HACK: for FSDP
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
if hasattr(config, "use_mm_proj"):
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
pretrain_mm_mlp_adapter=None, fsdp=None):
self.config.mm_vision_tower = vision_tower
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
if not hasattr(self, 'vision_tower'):
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
else:
vision_tower = self.vision_tower[0]
vision_tower.requires_grad_(False)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
vision_config = vision_tower.config
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
self.config.use_mm_proj = True
self.config.mm_hidden_size = vision_config.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
if not hasattr(self, 'mm_projector'):
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
return dict(
image_processor=image_processor,
image_token_len=num_patches,
vision_config=vision_config
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaVA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
# if orig_embeds_params is not None:
# orig_embeds_params = orig_embeds_params[0]
# with torch.no_grad():
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
vision_tower = self.get_vision_tower()
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
# TODO: this is a modified multimodal LLM -- Haotian Liu
with torch.no_grad():
if type(images) is list:
# variable length images
image_features = []
for image in images:
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
image_feature = select_hidden_state[:, 1:]
image_features.append(image_feature)
else:
image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True)
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
image_features = select_hidden_state[:, 1:].to(images.dtype)
if type(images) is list:
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
else:
image_features = self.mm_projector(image_features)
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
dummy_image_features = self.mm_projector(dummy_image_features)
new_input_embeds = []
cur_image_idx = 0
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
new_input_embeds.append(cur_input_embeds)
cur_image_idx += 1
continue
if vision_tower.config.use_im_start_end:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
raise ValueError("The number of image start tokens and image end tokens should be the same.")
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
for image_start_token_pos in image_start_tokens:
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
num_patches = cur_image_features.shape[0]
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
raise ValueError("The image end token should follow the image start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
cur_image_idx += 1
new_input_embeds.append(cur_new_input_embeds)
else:
cur_image_features = image_features[cur_image_idx]
num_patches = cur_image_features.shape[0]
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
mask_index_start = masked_indices[0]
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
raise ValueError("The image patch tokens should be consecutive.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
new_input_embeds.append(cur_new_input_embeds)
cur_image_idx += 1
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return super(LlavaLlamaModel, self).forward(
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict
)
class EditMapper(nn.Module):
def __init__(self):
super().__init__()
self.llm2hid = nn.Linear(4096, 512)
self.query = nn.Parameter(torch.randn(1, 77, 512))
self.mapper = nn.Transformer(batch_first=True, norm_first=True,
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
dim_feedforward=2048, dropout=0.0)
self.hid2feat = nn.Linear(512, 768)
def forward(self, llm, emb):
hid = self.llm2hid(llm+emb)
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
feat = self.hid2feat(hid)
return feat
class LlavaLlamaForCausalLM(LlamaForCausalLM):
config_class = LlavaConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
self.model = LlavaLlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.edit_head = EditMapper()
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
self.vae.requires_grad_(False)
self.unet.register_to_config(in_channels=8)
with torch.no_grad():
conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
conv.weight.zero_()
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
self.unet.conv_in = conv'''
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_vision_tower(self):
model = self.get_model()
vision_tower = model.vision_tower
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
p2p_inp=None, p2p_ans=None
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
images=images
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if labels is not None:
llm = []
for i in range(labels.shape[0]):
try: p = labels[i].data.cpu().tolist().index(32003)-1
except: p = len(labels[i])-9
p = min(len(hidden_states[i])-9, p)
llm.append(hidden_states[i][p:p+8].unsqueeze(0))
llm = torch.cat(llm, dim=0)
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
B, DROP = labels.shape[0], 0.05
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
with torch.no_grad():
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
noise = torch.randn_like(lat_ans)
ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long()
lat_noise = self.scheduler.add_noise(lat_ans, noise, ts)
prob = torch.rand(B, device=lat_ans.device)
mask = (prob<(DROP*2)).reshape(B, 1, 1)
hid_edit = torch.where(mask, hid_null, hid_edit)
mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1)
lat_inp *= mask
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
loss = loss_ce+loss_edit*0.5
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
}
)
return model_inputs
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
vision_config = self.get_vision_tower().config
vision_config.use_im_start_end = mm_use_im_start_end
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if tune_mm_mlp_adapter:
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
AutoConfig.register("llava", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)