Spaces:
Running
on
Zero
Running
on
Zero
# | |
# For licensing see accompanying LICENSE file. | |
# Copyright (C) 2024 Apple Inc. All Rights Reserved. | |
# | |
# modified from https://github.com/haotian-liu/LLaVA/blob/7ace501183c4bdec6052ec1a30039cdc3242a67c/llava/model/llava.py | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import CrossEntropyLoss | |
from transformers import AutoConfig, AutoModelForCausalLM, \ | |
LlamaConfig, LlamaModel, LlamaForCausalLM, \ | |
CLIPVisionModel, CLIPImageProcessor | |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | |
import os, diffusers | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
class LlavaConfig(LlamaConfig): | |
model_type = "llava" | |
class LlavaLlamaModel(LlamaModel): | |
config_class = LlavaConfig | |
def __init__(self, config: LlamaConfig): | |
super(LlavaLlamaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
# HACK: for FSDP | |
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)] | |
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower) | |
if hasattr(config, "use_mm_proj"): | |
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) | |
def get_vision_tower(self): | |
vision_tower = getattr(self, 'vision_tower', None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer, | |
pretrain_mm_mlp_adapter=None, fsdp=None): | |
self.config.mm_vision_tower = vision_tower | |
image_processor = CLIPImageProcessor.from_pretrained(vision_tower) | |
if not hasattr(self, 'vision_tower'): | |
vision_tower = CLIPVisionModel.from_pretrained(vision_tower) | |
else: | |
vision_tower = self.vision_tower[0] | |
vision_tower.requires_grad_(False) | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
else: | |
self.vision_tower = vision_tower | |
vision_config = vision_tower.config | |
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2 | |
self.config.use_mm_proj = True | |
self.config.mm_hidden_size = vision_config.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
if not hasattr(self, 'mm_projector'): | |
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size) | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()}) | |
return dict( | |
image_processor=image_processor, | |
image_token_len=num_patches, | |
vision_config=vision_config | |
) | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
# HACK: replace back original embeddings for LLaVA pretraining | |
orig_embeds_params = getattr(self, 'orig_embeds_params', None) | |
# if orig_embeds_params is not None: | |
# orig_embeds_params = orig_embeds_params[0] | |
# with torch.no_grad(): | |
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
vision_tower = self.get_vision_tower() | |
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None: | |
# TODO: this is a modified multimodal LLM -- Haotian Liu | |
with torch.no_grad(): | |
if type(images) is list: | |
# variable length images | |
image_features = [] | |
for image in images: | |
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True) | |
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) | |
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer] | |
image_feature = select_hidden_state[:, 1:] | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True) | |
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1) | |
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer] | |
image_features = select_hidden_state[:, 1:].to(images.dtype) | |
if type(images) is list: | |
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features] | |
else: | |
image_features = self.mm_projector(image_features) | |
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype) | |
dummy_image_features = self.mm_projector(dummy_image_features) | |
new_input_embeds = [] | |
cur_image_idx = 0 | |
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds): | |
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0: | |
# multimodal LLM, but the current sample is not multimodal | |
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum() | |
new_input_embeds.append(cur_input_embeds) | |
cur_image_idx += 1 | |
continue | |
if vision_tower.config.use_im_start_end: | |
cur_image_features = image_features[cur_image_idx] | |
num_patches = cur_image_features.shape[0] | |
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum(): | |
raise ValueError("The number of image start tokens and image end tokens should be the same.") | |
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0] | |
for image_start_token_pos in image_start_tokens: | |
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device) | |
num_patches = cur_image_features.shape[0] | |
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token: | |
raise ValueError("The image end token should follow the image start token.") | |
if orig_embeds_params is not None: | |
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0) | |
else: | |
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0) | |
cur_image_idx += 1 | |
new_input_embeds.append(cur_new_input_embeds) | |
else: | |
cur_image_features = image_features[cur_image_idx] | |
num_patches = cur_image_features.shape[0] | |
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches: | |
raise ValueError("The number of image patch tokens should be the same as the number of image patches.") | |
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0] | |
mask_index_start = masked_indices[0] | |
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any(): | |
raise ValueError("The image patch tokens should be consecutive.") | |
if orig_embeds_params is not None: | |
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0) | |
else: | |
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
cur_image_idx += 1 | |
inputs_embeds = torch.stack(new_input_embeds, dim=0) | |
return super(LlavaLlamaModel, self).forward( | |
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, use_cache=use_cache, | |
output_attentions=output_attentions, output_hidden_states=output_hidden_states, | |
return_dict=return_dict | |
) | |
class EditMapper(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.llm2hid = nn.Linear(4096, 512) | |
self.query = nn.Parameter(torch.randn(1, 77, 512)) | |
self.mapper = nn.Transformer(batch_first=True, norm_first=True, | |
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4, | |
dim_feedforward=2048, dropout=0.0) | |
self.hid2feat = nn.Linear(512, 768) | |
def forward(self, llm, emb): | |
hid = self.llm2hid(llm+emb) | |
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1)) | |
feat = self.hid2feat(hid) | |
return feat | |
class LlavaLlamaForCausalLM(LlamaForCausalLM): | |
config_class = LlavaConfig | |
def __init__(self, config): | |
super(LlamaForCausalLM, self).__init__(config) | |
self.model = LlavaLlamaModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.edit_head = EditMapper() | |
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'), | |
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'), | |
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')] | |
self.vae.requires_grad_(False) | |
self.unet.register_to_config(in_channels=8) | |
with torch.no_grad(): | |
conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding) | |
conv.weight.zero_() | |
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight) | |
self.unet.conv_in = conv''' | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def get_vision_tower(self): | |
model = self.get_model() | |
vision_tower = model.vision_tower | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
return_dict: Optional[bool] = None, | |
p2p_inp=None, p2p_ans=None | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
images=images | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model/pipeline parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if labels is not None: | |
llm = [] | |
for i in range(labels.shape[0]): | |
try: p = labels[i].data.cpu().tolist().index(32003)-1 | |
except: p = len(labels[i])-9 | |
p = min(len(hidden_states[i])-9, p) | |
llm.append(hidden_states[i][p:p+8].unsqueeze(0)) | |
llm = torch.cat(llm, dim=0) | |
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1)) | |
B, DROP = labels.shape[0], 0.05 | |
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device), | |
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1)) | |
with torch.no_grad(): | |
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode() | |
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device), | |
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)] | |
noise = torch.randn_like(lat_ans) | |
ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long() | |
lat_noise = self.scheduler.add_noise(lat_ans, noise, ts) | |
prob = torch.rand(B, device=lat_ans.device) | |
mask = (prob<(DROP*2)).reshape(B, 1, 1) | |
hid_edit = torch.where(mask, hid_null, hid_edit) | |
mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1) | |
lat_inp *= mask | |
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample | |
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean') | |
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit) | |
loss = loss_ce+loss_edit*0.5 | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"images": kwargs.get("images", None), | |
} | |
) | |
return model_inputs | |
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device, | |
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None): | |
vision_config = self.get_vision_tower().config | |
vision_config.use_im_start_end = mm_use_im_start_end | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if mm_use_im_start_end: | |
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
if tune_mm_mlp_adapter: | |
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)] | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') | |
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") | |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] | |
AutoConfig.register("llava", LlavaConfig) | |
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM) | |