# XTTSv2 Finetuning Guide for New Languages This guide provides instructions for finetuning XTTSv2 on a new language, using Vietnamese (`vi`) as an example. [UPDATE] A finetuned model for Vietnamese is now available at [anhnh2002/vnTTS](https://huggingface.co/anhnh2002/vnTTS) on Hugging Face ## Table of Contents 1. [Installation](#1-installation) 2. [Data Preparation](#2-data-preparation) 3. [Pretrained Model Download](#3-pretrained-model-download) 4. [Vocabulary Extension and Configuration Adjustment](#4-vocabulary-extension-and-configuration-adjustment) 5. [DVAE Finetuning (Optional)](#5-dvae-finetuning-optional) 6. [GPT Finetuning](#6-gpt-finetuning) 7. [Usage Example](#7-usage-example) ## 1. Installation First, clone the repository and install the necessary dependencies: ``` git clone https://github.com/nguyenhoanganh2002/XTTSv2-Finetuning-for-New-Languages.git cd XTTSv2-Finetuning-for-New-Languages pip install -r requirements.txt ``` ## 2. Data Preparation Ensure your data is organized as follows: ``` project_root/ ├── datasets-1/ │ ├── wavs/ │ │ ├── xxx.wav │ │ ├── yyy.wav │ │ ├── zzz.wav │ │ └── ... │ ├── metadata_train.csv │ ├── metadata_eval.csv ├── datasets-2/ │ ├── wavs/ │ │ ├── xxx.wav │ │ ├── yyy.wav │ │ ├── zzz.wav │ │ └── ... │ ├── metadata_train.csv │ ├── metadata_eval.csv ... │ ├── recipes/ ├── scripts/ ├── TTS/ └── README.md ``` Format your `metadata_train.csv` and `metadata_eval.csv` files as follows: ``` audio_file|text|speaker_name wavs/xxx.wav|How do you do?|@X wavs/yyy.wav|Nice to meet you.|@Y wavs/zzz.wav|Good to see you.|@Z ``` ## 3. Pretrained Model Download Execute the following command to download the pretrained model: ```bash python download_checkpoint.py --output_path checkpoints/ ``` ## 4. Vocabulary Extension and Configuration Adjustment Extend the vocabulary and adjust the configuration with: ```bash python extend_vocab_config.py --output_path=checkpoints/ --metadata_path datasets/metadata_train.csv --language vi --extended_vocab_size 2000 ``` ## 5. DVAE Finetuning (Optional) To finetune the DVAE, run: ```bash CUDA_VISIBLE_DEVICES=0 python train_dvae_xtts.py \ --output_path=checkpoints/ \ --train_csv_path=datasets/metadata_train.csv \ --eval_csv_path=datasets/metadata_eval.csv \ --language="vi" \ --num_epochs=5 \ --batch_size=512 \ --lr=5e-6 ``` ## 6. GPT Finetuning For GPT finetuning, execute: [OUTDATED] ```bash CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \ --output_path=checkpoints/ \ --train_csv_path=datasets/metadata_train.csv \ --eval_csv_path=datasets/metadata_eval.csv \ --language="vi" \ --num_epochs=5 \ --batch_size=8 \ --grad_acumm=2 \ --max_text_length=250 \ --max_audio_length=255995 \ --weight_decay=1e-2 \ --lr=5e-6 \ --save_step=2000 ``` [UPDATE - Supports training multiple datasets. Format metadatas parameter as follows: `path_to_train_csv_dataset-1,path_to_eval_csv_dataset-1,language_dataset-1 path_to_train_csv_dataset-2,path_to_eval_csv_dataset-2,language_dataset-2 ...`] ```bash CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \ --output_path checkpoints/ \ --metadatas datasets-1/metadata_train.csv,datasets-1/metadata_eval.csv,vi datasets-2/metadata_train.csv,datasets-2/metadata_eval.csv,vi \ --num_epochs 5 \ --batch_size 8 \ --grad_acumm 4 \ --max_text_length 400 \ --max_audio_length 330750 \ --weight_decay 1e-2 \ --lr 5e-6 \ --save_step 50000 ``` ## 7. Usage Example Here's a sample code snippet demonstrating how to use the finetuned model: ```python import torch import torchaudio from tqdm import tqdm from underthesea import sent_tokenize from TTS.tts.configs.xtts_config import XttsConfig from TTS.tts.models.xtts import Xtts # Device configuration device = "cuda:0" if torch.cuda.is_available() else "cpu" # Model paths xtts_checkpoint = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/best_model_99875.pth" xtts_config = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/config.json" xtts_vocab = "checkpoints/XTTS_v2.0_original_model_files/vocab.json" # Load model config = XttsConfig() config.load_json(xtts_config) XTTS_MODEL = Xtts.init_from_config(config) XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False) XTTS_MODEL.to(device) print("Model loaded successfully!") # Inference tts_text = "Good to see you." speaker_audio_file = "ref.wav" lang = "vi" gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents( audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs, ) tts_texts = sent_tokenize(tts_text) wav_chunks = [] for text in tqdm(tts_texts): wav_chunk = XTTS_MODEL.inference( text=text, language=lang, gpt_cond_latent=gpt_cond_latent, speaker_embedding=speaker_embedding, temperature=0.1, length_penalty=1.0, repetition_penalty=10.0, top_k=10, top_p=0.3, ) wav_chunks.append(torch.tensor(wav_chunk["wav"])) out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0).cpu() # Play audio (for Jupyter Notebook) from IPython.display import Audio Audio(out_wav, rate=24000) ``` Note: Finetuning the HiFiGAN decoder was attempted but resulted in worse performance. DVAE and GPT finetuning are sufficient for optimal results. Update: If you have enough short texts in your datasets (about 20 hours), you do not need to finetune DVAE.