Spaces:
Configuration error
Configuration error
import gradio as gr | |
from langchain_community.document_loaders import YoutubeLoader | |
from langchain_cohere import ChatCohere | |
from langchain import hub | |
from langchain_chroma import Chroma | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_cohere import CohereEmbeddings | |
import os | |
import os | |
COHERE_API_KEY = os.environ.get("COHERE_API_KEY") | |
llm = ChatCohere(model="command-r",cohere_api_key=COHERE_API_KEY) | |
prompt = hub.pull("rlm/rag-prompt") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
def format_docs(docs): | |
return "\n\n".join(doc.page_content for doc in docs) | |
# Function to load YouTube details | |
def get_youtube_details(video_url): | |
print(video_url) | |
loader = YoutubeLoader.from_youtube_url(str(video_url), add_video_info=False) | |
docs = loader.load() | |
print(docs) | |
print("Video transcripts loaded in DB") | |
return docs, loader | |
# Function to handle user messages and update the history | |
def user_message(message, history): | |
return "", history + [[message, None]] | |
# Function to clear the vector store (optional, not used in this example) | |
def clear_vectorstore(vectorstore): | |
vectorstore.delete_all() | |
return "Vector store cleared." | |
# Function to clear the text box and reset the state | |
def clear_textbox(): | |
return "", None, None | |
# Function to handle bot responses | |
def bot_message(history, docs): | |
if docs is None: | |
return history | |
print(docs,"instide bot_message") | |
user_question = history[-1][0] | |
splits = text_splitter.split_documents(docs) | |
print(splits,"splits are also here") | |
vectorstore = Chroma.from_documents(documents=splits, embedding=CohereEmbeddings(model="embed-english-light-v3.0", | |
cohere_api_key=COHERE_API_KEY)) | |
retriever = vectorstore.as_retriever() | |
rag_chain = ( | |
{"context": retriever | format_docs, "question": RunnablePassthrough()} | |
| prompt | |
| llm | |
| StrOutputParser() | |
) | |
response = rag_chain.invoke(user_question) | |
history[-1][1] = response | |
return history | |
title=( | |
""" | |
<center> | |
<h1> VideoQ: Quick Answers, Skip Clickbait </h1> | |
<b> text 📧<b> | |
</center> | |
""" | |
) | |
with gr.Blocks(theme=gr.themes.Monochrome()) as demo: | |
# gr.Markdown("# VideoQ: Quick Answers, Skip Clickbait") | |
with gr.Row(): | |
gr.HTML(title,label=" ") | |
gr.Markdown(""" | |
### Skip the endless scrolling. VideoQ provides instant video insights. | |
### Ask Questions to YouTube video and Save Time | |
""",label="Description") | |
text_box = gr.Textbox(lines=2, placeholder="Enter link of the YouTube video",label="Youtube valid link") | |
with gr.Row(): | |
load_button = gr.Button("Load Document") | |
clear_button = gr.Button("Clear Document") | |
docs_box = gr.State() | |
loader_box = gr.State() | |
load_button.click(fn=get_youtube_details, inputs=[text_box], outputs=[docs_box, loader_box]) | |
clear_button.click(fn=clear_textbox, inputs=[], outputs=[text_box, docs_box, loader_box]) | |
chatbot_interface = gr.Chatbot(show_copy_button=True,label=" ") | |
msg = gr.Textbox(label="Message") | |
with gr.Row(): | |
submit_btn = gr.Button("Submit") | |
clear_btn = gr.Button("Clear") | |
submit_btn.click(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then( | |
bot_message, [chatbot_interface, docs_box], chatbot_interface) | |
msg.submit(user_message, [msg, chatbot_interface], [msg, chatbot_interface], queue=False).then( | |
bot_message, [chatbot_interface, docs_box], chatbot_interface) | |
clear_btn.click(lambda: None, None, chatbot_interface, queue=False) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |