tykimos's picture
Update app.py
2f2d8de
raw
history blame
1.64 kB
import gradio as gr
label_dict = {}
f = open('baseline_keras_model_labels.txt', 'r')
lines = f.readlines()
for line in lines:
index, label_name = line.split(' ')
label_dict[int(index)] = label_name.strip()
f.close()
from keras.models import load_model
from PIL import Image, ImageOps
import numpy as np
import os
# Load the model
model = load_model('baseline_keras_model.h5')
# Create the array of the right shape to feed into the keras model
# The 'length' or number of images you can put into the array is
# determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Replace this with the path to your image
folder_path = 'x_test'
y_pred = []
def clf(name):
image = Image.open(fpath)
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)
#turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
# run the inference
prediction = model.predict(data)
confidences = {label_dict[i]: float(prediction[i]) for i in range(4)}
return confidences
gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=5),
examples=["12122.jpg", "12342.jpg", "23482.jpg", "23992.jpg", "29349.jpg", "29384.jpg", "32321.jpg", "43413.jpg", "59394.jpg", "77923.jpg", "83823.jpg", "88893.jpg", "88921.jpg", "88923.jpg", "92309.jpg", "92921.jpg"]).launch()