Spaces:
Runtime error
Runtime error
import gradio as gr | |
label_dict = {} | |
f = open('baseline_keras_model_labels.txt', 'r') | |
lines = f.readlines() | |
for line in lines: | |
index, label_name = line.split(' ') | |
label_dict[int(index)] = label_name.strip() | |
f.close() | |
import tensorflow as tf | |
from tensorflow import keras | |
from keras.models import load_model | |
from PIL import Image, ImageOps | |
import numpy as np | |
import os | |
# Load the model | |
model = load_model('baseline_keras_model.h5') | |
# Create the array of the right shape to feed into the keras model | |
# The 'length' or number of images you can put into the array is | |
# determined by the first position in the shape tuple, in this case 1. | |
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) | |
# Replace this with the path to your image | |
folder_path = 'x_test' | |
y_pred = [] | |
def predict(image): | |
size = (224, 224) | |
image = ImageOps.fit(image, size, Image.ANTIALIAS) | |
#turn the image into a numpy array | |
image_array = np.asarray(image) | |
# Normalize the image | |
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 | |
# Load the image into the array | |
data[0] = normalized_image_array | |
# run the inference | |
prediction = model.predict(data) | |
confidences = {label_dict[i]: float(prediction[i]) for i in range(4)} | |
return confidences | |
gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=5), | |
examples=["12122.jpg", "23482.jpg", "32321.jpg", "43413.jpg", "59394.jpg", "77923.jpg", "83823.jpg"]).launch() |