import gradio as gr label_dict = {} f = open('baseline_keras_model_labels.txt', 'r') lines = f.readlines() for line in lines: index, label_name = line.split(' ') label_dict[int(index)] = label_name.strip() f.close() import tensorflow as tf from tensorflow import keras from keras.models import load_model from PIL import Image, ImageOps import numpy as np import os # Load the model model = load_model('baseline_keras_model.h5') # Create the array of the right shape to feed into the keras model # The 'length' or number of images you can put into the array is # determined by the first position in the shape tuple, in this case 1. data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) # Replace this with the path to your image folder_path = 'x_test' y_pred = [] def predict(name): image = Image.open(fpath) size = (224, 224) image = ImageOps.fit(image, size, Image.ANTIALIAS) #turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1 # Load the image into the array data[0] = normalized_image_array # run the inference prediction = model.predict(data) confidences = {label_dict[i]: float(prediction[i]) for i in range(4)} return confidences gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=5), examples=["12122.jpg", "12342.jpg", "23482.jpg", "23992.jpg", "29349.jpg", "29384.jpg", "32321.jpg", "43413.jpg", "59394.jpg", "77923.jpg", "83823.jpg", "88893.jpg", "88921.jpg", "88923.jpg", "92309.jpg", "92921.jpg"]).launch()