File size: 18,915 Bytes
8078d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
from typing import Any, Dict, List, Optional, Tuple

import numpy as np
import torch
from torchvision.ops.boxes import batched_nms, box_area  # type: ignore

from sam2.modeling.sam2_base import SAM2Base
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.utils.amg import (
    area_from_rle,
    batch_iterator,
    batched_mask_to_box,
    box_xyxy_to_xywh,
    build_all_layer_point_grids,
    calculate_stability_score,
    coco_encode_rle,
    generate_crop_boxes,
    is_box_near_crop_edge,
    mask_to_rle_pytorch,
    MaskData,
    remove_small_regions,
    rle_to_mask,
    uncrop_boxes_xyxy,
    uncrop_masks,
    uncrop_points,
)


class SAM2AutomaticMaskGenerator:
    def __init__(

        self,

        model: SAM2Base,

        points_per_side: Optional[int] = 32,

        points_per_batch: int = 64,

        pred_iou_thresh: float = 0.8,

        stability_score_thresh: float = 0.95,

        stability_score_offset: float = 1.0,

        mask_threshold: float = 0.0,

        box_nms_thresh: float = 0.7,

        crop_n_layers: int = 0,

        crop_nms_thresh: float = 0.7,

        crop_overlap_ratio: float = 512 / 1500,

        crop_n_points_downscale_factor: int = 1,

        point_grids: Optional[List[np.ndarray]] = None,

        min_mask_region_area: int = 0,

        output_mode: str = "binary_mask",

        use_m2m: bool = False,

        multimask_output: bool = True,

        **kwargs,

    ) -> None:
        """

        Using a SAM 2 model, generates masks for the entire image.

        Generates a grid of point prompts over the image, then filters

        low quality and duplicate masks. The default settings are chosen

        for SAM 2 with a HieraL backbone.



        Arguments:

          model (Sam): The SAM 2 model to use for mask prediction.

          points_per_side (int or None): The number of points to be sampled

            along one side of the image. The total number of points is

            points_per_side**2. If None, 'point_grids' must provide explicit

            point sampling.

          points_per_batch (int): Sets the number of points run simultaneously

            by the model. Higher numbers may be faster but use more GPU memory.

          pred_iou_thresh (float): A filtering threshold in [0,1], using the

            model's predicted mask quality.

          stability_score_thresh (float): A filtering threshold in [0,1], using

            the stability of the mask under changes to the cutoff used to binarize

            the model's mask predictions.

          stability_score_offset (float): The amount to shift the cutoff when

            calculated the stability score.

          mask_threshold (float): Threshold for binarizing the mask logits

          box_nms_thresh (float): The box IoU cutoff used by non-maximal

            suppression to filter duplicate masks.

          crop_n_layers (int): If >0, mask prediction will be run again on

            crops of the image. Sets the number of layers to run, where each

            layer has 2**i_layer number of image crops.

          crop_nms_thresh (float): The box IoU cutoff used by non-maximal

            suppression to filter duplicate masks between different crops.

          crop_overlap_ratio (float): Sets the degree to which crops overlap.

            In the first crop layer, crops will overlap by this fraction of

            the image length. Later layers with more crops scale down this overlap.

          crop_n_points_downscale_factor (int): The number of points-per-side

            sampled in layer n is scaled down by crop_n_points_downscale_factor**n.

          point_grids (list(np.ndarray) or None): A list over explicit grids

            of points used for sampling, normalized to [0,1]. The nth grid in the

            list is used in the nth crop layer. Exclusive with points_per_side.

          min_mask_region_area (int): If >0, postprocessing will be applied

            to remove disconnected regions and holes in masks with area smaller

            than min_mask_region_area. Requires opencv.

          output_mode (str): The form masks are returned in. Can be 'binary_mask',

            'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.

            For large resolutions, 'binary_mask' may consume large amounts of

            memory.

          use_m2m (bool): Whether to add a one step refinement using previous mask predictions.

          multimask_output (bool): Whether to output multimask at each point of the grid.

        """

        assert (points_per_side is None) != (
            point_grids is None
        ), "Exactly one of points_per_side or point_grid must be provided."
        if points_per_side is not None:
            self.point_grids = build_all_layer_point_grids(
                points_per_side,
                crop_n_layers,
                crop_n_points_downscale_factor,
            )
        elif point_grids is not None:
            self.point_grids = point_grids
        else:
            raise ValueError("Can't have both points_per_side and point_grid be None.")

        assert output_mode in [
            "binary_mask",
            "uncompressed_rle",
            "coco_rle",
        ], f"Unknown output_mode {output_mode}."
        if output_mode == "coco_rle":
            try:
                from pycocotools import mask as mask_utils  # type: ignore  # noqa: F401
            except ImportError as e:
                print("Please install pycocotools")
                raise e

        self.predictor = SAM2ImagePredictor(
            model,
            max_hole_area=min_mask_region_area,
            max_sprinkle_area=min_mask_region_area,
        )
        self.points_per_batch = points_per_batch
        self.pred_iou_thresh = pred_iou_thresh
        self.stability_score_thresh = stability_score_thresh
        self.stability_score_offset = stability_score_offset
        self.mask_threshold = mask_threshold
        self.box_nms_thresh = box_nms_thresh
        self.crop_n_layers = crop_n_layers
        self.crop_nms_thresh = crop_nms_thresh
        self.crop_overlap_ratio = crop_overlap_ratio
        self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
        self.min_mask_region_area = min_mask_region_area
        self.output_mode = output_mode
        self.use_m2m = use_m2m
        self.multimask_output = multimask_output

    @classmethod
    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
        """

        Load a pretrained model from the Hugging Face hub.



        Arguments:

          model_id (str): The Hugging Face repository ID.

          **kwargs: Additional arguments to pass to the model constructor.



        Returns:

          (SAM2AutomaticMaskGenerator): The loaded model.

        """
        from sam2.build_sam import build_sam2_hf

        sam_model = build_sam2_hf(model_id, **kwargs)
        return cls(sam_model, **kwargs)

    @torch.no_grad()
    def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
        """

        Generates masks for the given image.



        Arguments:

          image (np.ndarray): The image to generate masks for, in HWC uint8 format.



        Returns:

           list(dict(str, any)): A list over records for masks. Each record is

             a dict containing the following keys:

               segmentation (dict(str, any) or np.ndarray): The mask. If

                 output_mode='binary_mask', is an array of shape HW. Otherwise,

                 is a dictionary containing the RLE.

               bbox (list(float)): The box around the mask, in XYWH format.

               area (int): The area in pixels of the mask.

               predicted_iou (float): The model's own prediction of the mask's

                 quality. This is filtered by the pred_iou_thresh parameter.

               point_coords (list(list(float))): The point coordinates input

                 to the model to generate this mask.

               stability_score (float): A measure of the mask's quality. This

                 is filtered on using the stability_score_thresh parameter.

               crop_box (list(float)): The crop of the image used to generate

                 the mask, given in XYWH format.

        """

        # Generate masks
        mask_data = self._generate_masks(image)

        # Encode masks
        if self.output_mode == "coco_rle":
            mask_data["segmentations"] = [
                coco_encode_rle(rle) for rle in mask_data["rles"]
            ]
        elif self.output_mode == "binary_mask":
            mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
        else:
            mask_data["segmentations"] = mask_data["rles"]

        # Write mask records
        curr_anns = []
        for idx in range(len(mask_data["segmentations"])):
            ann = {
                "segmentation": mask_data["segmentations"][idx],
                "area": area_from_rle(mask_data["rles"][idx]),
                "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
                "predicted_iou": mask_data["iou_preds"][idx].item(),
                "point_coords": [mask_data["points"][idx].tolist()],
                "stability_score": mask_data["stability_score"][idx].item(),
                "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
            }
            curr_anns.append(ann)

        return curr_anns

    def _generate_masks(self, image: np.ndarray) -> MaskData:
        orig_size = image.shape[:2]
        crop_boxes, layer_idxs = generate_crop_boxes(
            orig_size, self.crop_n_layers, self.crop_overlap_ratio
        )

        # Iterate over image crops
        data = MaskData()
        for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
            crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
            data.cat(crop_data)

        # Remove duplicate masks between crops
        if len(crop_boxes) > 1:
            # Prefer masks from smaller crops
            scores = 1 / box_area(data["crop_boxes"])
            scores = scores.to(data["boxes"].device)
            keep_by_nms = batched_nms(
                data["boxes"].float(),
                scores,
                torch.zeros_like(data["boxes"][:, 0]),  # categories
                iou_threshold=self.crop_nms_thresh,
            )
            data.filter(keep_by_nms)
        data.to_numpy()
        return data

    def _process_crop(

        self,

        image: np.ndarray,

        crop_box: List[int],

        crop_layer_idx: int,

        orig_size: Tuple[int, ...],

    ) -> MaskData:
        # Crop the image and calculate embeddings
        x0, y0, x1, y1 = crop_box
        cropped_im = image[y0:y1, x0:x1, :]
        cropped_im_size = cropped_im.shape[:2]
        self.predictor.set_image(cropped_im)

        # Get points for this crop
        points_scale = np.array(cropped_im_size)[None, ::-1]
        points_for_image = self.point_grids[crop_layer_idx] * points_scale

        # Generate masks for this crop in batches
        data = MaskData()
        for (points,) in batch_iterator(self.points_per_batch, points_for_image):
            batch_data = self._process_batch(
                points, cropped_im_size, crop_box, orig_size, normalize=True
            )
            data.cat(batch_data)
            del batch_data
        self.predictor.reset_predictor()

        # Remove duplicates within this crop.
        keep_by_nms = batched_nms(
            data["boxes"].float(),
            data["iou_preds"],
            torch.zeros_like(data["boxes"][:, 0]),  # categories
            iou_threshold=self.box_nms_thresh,
        )
        data.filter(keep_by_nms)

        # Return to the original image frame
        data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
        data["points"] = uncrop_points(data["points"], crop_box)
        data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])

        return data

    def _process_batch(

        self,

        points: np.ndarray,

        im_size: Tuple[int, ...],

        crop_box: List[int],

        orig_size: Tuple[int, ...],

        normalize=False,

    ) -> MaskData:
        orig_h, orig_w = orig_size

        # Run model on this batch
        points = torch.as_tensor(
            points, dtype=torch.float32, device=self.predictor.device
        )
        in_points = self.predictor._transforms.transform_coords(
            points, normalize=normalize, orig_hw=im_size
        )
        in_labels = torch.ones(
            in_points.shape[0], dtype=torch.int, device=in_points.device
        )
        masks, iou_preds, low_res_masks = self.predictor._predict(
            in_points[:, None, :],
            in_labels[:, None],
            multimask_output=self.multimask_output,
            return_logits=True,
        )

        # Serialize predictions and store in MaskData
        data = MaskData(
            masks=masks.flatten(0, 1),
            iou_preds=iou_preds.flatten(0, 1),
            points=points.repeat_interleave(masks.shape[1], dim=0),
            low_res_masks=low_res_masks.flatten(0, 1),
        )
        del masks

        if not self.use_m2m:
            # Filter by predicted IoU
            if self.pred_iou_thresh > 0.0:
                keep_mask = data["iou_preds"] > self.pred_iou_thresh
                data.filter(keep_mask)

            # Calculate and filter by stability score
            data["stability_score"] = calculate_stability_score(
                data["masks"], self.mask_threshold, self.stability_score_offset
            )
            if self.stability_score_thresh > 0.0:
                keep_mask = data["stability_score"] >= self.stability_score_thresh
                data.filter(keep_mask)
        else:
            # One step refinement using previous mask predictions
            in_points = self.predictor._transforms.transform_coords(
                data["points"], normalize=normalize, orig_hw=im_size
            )
            labels = torch.ones(
                in_points.shape[0], dtype=torch.int, device=in_points.device
            )
            masks, ious = self.refine_with_m2m(
                in_points, labels, data["low_res_masks"], self.points_per_batch
            )
            data["masks"] = masks.squeeze(1)
            data["iou_preds"] = ious.squeeze(1)

            if self.pred_iou_thresh > 0.0:
                keep_mask = data["iou_preds"] > self.pred_iou_thresh
                data.filter(keep_mask)

            data["stability_score"] = calculate_stability_score(
                data["masks"], self.mask_threshold, self.stability_score_offset
            )
            if self.stability_score_thresh > 0.0:
                keep_mask = data["stability_score"] >= self.stability_score_thresh
                data.filter(keep_mask)

        # Threshold masks and calculate boxes
        data["masks"] = data["masks"] > self.mask_threshold
        data["boxes"] = batched_mask_to_box(data["masks"])

        # Filter boxes that touch crop boundaries
        keep_mask = ~is_box_near_crop_edge(
            data["boxes"], crop_box, [0, 0, orig_w, orig_h]
        )
        if not torch.all(keep_mask):
            data.filter(keep_mask)

        # Compress to RLE
        data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
        data["rles"] = mask_to_rle_pytorch(data["masks"])
        del data["masks"]

        return data

    @staticmethod
    def postprocess_small_regions(

        mask_data: MaskData, min_area: int, nms_thresh: float

    ) -> MaskData:
        """

        Removes small disconnected regions and holes in masks, then reruns

        box NMS to remove any new duplicates.



        Edits mask_data in place.



        Requires open-cv as a dependency.

        """
        if len(mask_data["rles"]) == 0:
            return mask_data

        # Filter small disconnected regions and holes
        new_masks = []
        scores = []
        for rle in mask_data["rles"]:
            mask = rle_to_mask(rle)

            mask, changed = remove_small_regions(mask, min_area, mode="holes")
            unchanged = not changed
            mask, changed = remove_small_regions(mask, min_area, mode="islands")
            unchanged = unchanged and not changed

            new_masks.append(torch.as_tensor(mask).unsqueeze(0))
            # Give score=0 to changed masks and score=1 to unchanged masks
            # so NMS will prefer ones that didn't need postprocessing
            scores.append(float(unchanged))

        # Recalculate boxes and remove any new duplicates
        masks = torch.cat(new_masks, dim=0)
        boxes = batched_mask_to_box(masks)
        keep_by_nms = batched_nms(
            boxes.float(),
            torch.as_tensor(scores),
            torch.zeros_like(boxes[:, 0]),  # categories
            iou_threshold=nms_thresh,
        )

        # Only recalculate RLEs for masks that have changed
        for i_mask in keep_by_nms:
            if scores[i_mask] == 0.0:
                mask_torch = masks[i_mask].unsqueeze(0)
                mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
                mask_data["boxes"][i_mask] = boxes[i_mask]  # update res directly
        mask_data.filter(keep_by_nms)

        return mask_data

    def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
        new_masks = []
        new_iou_preds = []

        for cur_points, cur_point_labels, low_res_mask in batch_iterator(
            points_per_batch, points, point_labels, low_res_masks
        ):
            best_masks, best_iou_preds, _ = self.predictor._predict(
                cur_points[:, None, :],
                cur_point_labels[:, None],
                mask_input=low_res_mask[:, None, :],
                multimask_output=False,
                return_logits=True,
            )
            new_masks.append(best_masks)
            new_iou_preds.append(best_iou_preds)
        masks = torch.cat(new_masks, dim=0)
        return masks, torch.cat(new_iou_preds, dim=0)