File size: 5,678 Bytes
8078d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Optional

import torch
from torch import nn, Tensor

from sam2.modeling.sam.transformer import RoPEAttention

from sam2.modeling.sam2_utils import get_activation_fn, get_clones


class MemoryAttentionLayer(nn.Module):

    def __init__(

        self,

        activation: str,

        cross_attention: nn.Module,

        d_model: int,

        dim_feedforward: int,

        dropout: float,

        pos_enc_at_attn: bool,

        pos_enc_at_cross_attn_keys: bool,

        pos_enc_at_cross_attn_queries: bool,

        self_attention: nn.Module,

    ):
        super().__init__()
        self.d_model = d_model
        self.dim_feedforward = dim_feedforward
        self.dropout_value = dropout
        self.self_attn = self_attention
        self.cross_attn_image = cross_attention

        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation_str = activation
        self.activation = get_activation_fn(activation)

        # Where to add pos enc
        self.pos_enc_at_attn = pos_enc_at_attn
        self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
        self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys

    def _forward_sa(self, tgt, query_pos):
        # Self-Attention
        tgt2 = self.norm1(tgt)
        q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
        tgt2 = self.self_attn(q, k, v=tgt2)
        tgt = tgt + self.dropout1(tgt2)
        return tgt

    def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
        kwds = {}
        if num_k_exclude_rope > 0:
            assert isinstance(self.cross_attn_image, RoPEAttention)
            kwds = {"num_k_exclude_rope": num_k_exclude_rope}

        # Cross-Attention
        tgt2 = self.norm2(tgt)
        tgt2 = self.cross_attn_image(
            q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
            k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
            v=memory,
            **kwds,
        )
        tgt = tgt + self.dropout2(tgt2)
        return tgt

    def forward(

        self,

        tgt,

        memory,

        pos: Optional[Tensor] = None,

        query_pos: Optional[Tensor] = None,

        num_k_exclude_rope: int = 0,

    ) -> torch.Tensor:

        # Self-Attn, Cross-Attn
        tgt = self._forward_sa(tgt, query_pos)
        tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
        # MLP
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt


class MemoryAttention(nn.Module):
    def __init__(

        self,

        d_model: int,

        pos_enc_at_input: bool,

        layer: nn.Module,

        num_layers: int,

        batch_first: bool = True,  # Do layers expect batch first input?

    ):
        super().__init__()
        self.d_model = d_model
        self.layers = get_clones(layer, num_layers)
        self.num_layers = num_layers
        self.norm = nn.LayerNorm(d_model)
        self.pos_enc_at_input = pos_enc_at_input
        self.batch_first = batch_first

    def forward(

        self,

        curr: torch.Tensor,  # self-attention inputs

        memory: torch.Tensor,  # cross-attention inputs

        curr_pos: Optional[Tensor] = None,  # pos_enc for self-attention inputs

        memory_pos: Optional[Tensor] = None,  # pos_enc for cross-attention inputs

        num_obj_ptr_tokens: int = 0,  # number of object pointer *tokens*

    ):
        if isinstance(curr, list):
            assert isinstance(curr_pos, list)
            assert len(curr) == len(curr_pos) == 1
            curr, curr_pos = (
                curr[0],
                curr_pos[0],
            )

        assert (
            curr.shape[1] == memory.shape[1]
        ), "Batch size must be the same for curr and memory"

        output = curr
        if self.pos_enc_at_input and curr_pos is not None:
            output = output + 0.1 * curr_pos

        if self.batch_first:
            # Convert to batch first
            output = output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)
            memory = memory.transpose(0, 1)
            memory_pos = memory_pos.transpose(0, 1)

        for layer in self.layers:
            kwds = {}
            if isinstance(layer.cross_attn_image, RoPEAttention):
                kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}

            output = layer(
                tgt=output,
                memory=memory,
                pos=memory_pos,
                query_pos=curr_pos,
                **kwds,
            )
        normed_output = self.norm(output)

        if self.batch_first:
            # Convert back to seq first
            normed_output = normed_output.transpose(0, 1)
            curr_pos = curr_pos.transpose(0, 1)

        return normed_output