File size: 33,054 Bytes
8078d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d9f9ef
 
 
8078d22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
from flask import Flask, render_template, request, jsonify
from flask_socketio import SocketIO
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import shutil
import numpy as np
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor

class Predictor:
    def __init__(self, model_cfg, checkpoint, device):
        self.device = device
        self.model = build_sam2(model_cfg, checkpoint, device=device)
        self.predictor = SAM2ImagePredictor(self.model)
        self.image_set = False

    def set_image(self, image):
        """Set the image for SAM prediction."""
        self.image = image
        self.predictor.set_image(image)
        self.image_set = True

    def predict(self, point_coords, point_labels, multimask_output=False):
        """Run SAM prediction."""
        if not self.image_set:
            raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
        return self.predictor.predict(
            point_coords=point_coords,
            point_labels=point_labels,
            multimask_output=multimask_output
        )
from utils.helpers import (
    blend_mask_with_image,
    save_mask_as_png,
    convert_mask_to_yolo,
)
import torch
from ultralytics import YOLO
import threading
from threading import Lock
import subprocess
import time
import logging
import multiprocessing
import json


# Initialize Flask app and SocketIO
app = Flask(__name__)
socketio = SocketIO(app)

# Define Base Directory
BASE_DIR = os.path.abspath(os.path.dirname(__file__))

# Folder structure with absolute paths
UPLOAD_FOLDERS = {
    'input': os.path.join(BASE_DIR, 'static/uploads/input'),
    'segmented_voids': os.path.join(BASE_DIR, 'static/uploads/segmented/voids'),
    'segmented_chips': os.path.join(BASE_DIR, 'static/uploads/segmented/chips'),
    'mask_voids': os.path.join(BASE_DIR, 'static/uploads/mask/voids'),
    'mask_chips': os.path.join(BASE_DIR, 'static/uploads/mask/chips'),
    'automatic_segmented': os.path.join(BASE_DIR, 'static/uploads/segmented/automatic'),
}

HISTORY_FOLDERS = {
    'images': os.path.join(BASE_DIR, 'static/history/images'),
    'masks_chip': os.path.join(BASE_DIR, 'static/history/masks/chip'),
    'masks_void': os.path.join(BASE_DIR, 'static/history/masks/void'),
}

DATASET_FOLDERS = {
    'train_images': os.path.join(BASE_DIR, 'dataset/train/images'),
    'train_labels': os.path.join(BASE_DIR, 'dataset/train/labels'),
    'val_images': os.path.join(BASE_DIR, 'dataset/val/images'),
    'val_labels': os.path.join(BASE_DIR, 'dataset/val/labels'),
    'temp_backup': os.path.join(BASE_DIR, 'temp_backup'),
    'models': os.path.join(BASE_DIR, 'models'),
    'models_old': os.path.join(BASE_DIR, 'models/old'),
}

# Ensure all folders exist
for folder_name, folder_path in {**UPLOAD_FOLDERS, **HISTORY_FOLDERS, **DATASET_FOLDERS}.items():
    os.makedirs(folder_path, exist_ok=True)
    logging.info(f"Ensured folder exists: {folder_name} -> {folder_path}")

training_process = None


def initialize_training_status():
    """Initialize global training status."""
    global training_status
    training_status = {'running': False, 'cancelled': False}

def persist_training_status():
    """Save training status to a file."""
    with open(os.path.join(BASE_DIR, 'training_status.json'), 'w') as status_file:
        json.dump(training_status, status_file)

def load_training_status():
    """Load training status from a file."""
    global training_status
    status_path = os.path.join(BASE_DIR, 'training_status.json')
    if os.path.exists(status_path):
        with open(status_path, 'r') as status_file:
            training_status = json.load(status_file)
    else:
        training_status = {'running': False, 'cancelled': False}

load_training_status()

os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0"

# Initialize SAM Predictor
MODEL_CFG = os.path.join(BASE_DIR, "sam2", "sam2_hiera_l.yaml")
CHECKPOINT = os.path.join(BASE_DIR, "sam2", "sam2.1_hiera_large.pt")
print(f"Chargement de {MODEL_CFG} et {CHECKPOINT} sur l'appareil .")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
predictor = Predictor(MODEL_CFG, CHECKPOINT, DEVICE)

# Initialize YOLO-seg
YOLO_CFG = os.path.join(DATASET_FOLDERS['models'], "best.pt")
yolo_model = YOLO(YOLO_CFG)

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s] %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler(os.path.join(BASE_DIR, "app.log"))  # Log to a file
    ]
)


@app.route('/')
def index():
    """Serve the main UI."""
    return render_template('index.html')

@app.route('/upload', methods=['POST'])
def upload_image():
    """Handle image uploads."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400
    file = request.files['file']
    if file.filename == '':
        return jsonify({'error': 'No file selected'}), 400

    # Save the uploaded file to the input folder
    input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
    file.save(input_path)

    # Set the uploaded image in the predictor
    image = np.array(Image.open(input_path).convert("RGB"))
    predictor.set_image(image)

    # Return a web-accessible URL instead of the file system path
    web_accessible_url = f"/static/uploads/input/{file.filename}"
    print(f"Image uploaded and set for prediction: {input_path}")
    return jsonify({'image_url': web_accessible_url})

@app.route('/segment', methods=['POST'])
def segment():
    """
    Perform segmentation and return the blended image URL.
    """
    try:
        # Extract data from request
        data = request.json
        points = np.array(data.get('points', []))
        labels = np.array(data.get('labels', []))
        current_class = data.get('class', 'voids')  # Default to 'voids' if class not provided

        # Ensure predictor has an image set
        if not predictor.image_set:
            raise ValueError("No image set for prediction.")

        # Perform SAM prediction
        masks, _, _ = predictor.predict(
            point_coords=points,
            point_labels=labels,
            multimask_output=False
        )

        # Check if masks exist and have non-zero elements
        if masks is None or masks.size == 0:
            raise RuntimeError("No masks were generated by the predictor.")

        # Define output paths based on class
        mask_folder = UPLOAD_FOLDERS.get(f'mask_{current_class}')
        segmented_folder = UPLOAD_FOLDERS.get(f'segmented_{current_class}')

        if not mask_folder or not segmented_folder:
            raise ValueError(f"Invalid class '{current_class}' provided.")

        os.makedirs(mask_folder, exist_ok=True)
        os.makedirs(segmented_folder, exist_ok=True)

        # Save the raw mask
        mask_path = os.path.join(mask_folder, 'raw_mask.png')
        save_mask_as_png(masks[0], mask_path)

        # Generate blended image
        blend_color = [34, 139, 34] if current_class == 'voids' else [30, 144, 255]  # Green for voids, blue for chips
        blended_image = blend_mask_with_image(predictor.image, masks[0], blend_color)

        # Save blended image
        blended_filename = f"blended_{current_class}.png"
        blended_path = os.path.join(segmented_folder, blended_filename)
        Image.fromarray(blended_image).save(blended_path)

        # Return URL for frontend access
        segmented_url = f"/static/uploads/segmented/{current_class}/{blended_filename}"
        logging.info(f"Segmentation completed for {current_class}. Points: {points}, Labels: {labels}")
        return jsonify({'segmented_url': segmented_url})

    except ValueError as ve:
        logging.error(f"Value error during segmentation: {ve}")
        return jsonify({'error': str(ve)}), 400

    except Exception as e:
        logging.error(f"Unexpected error during segmentation: {e}")
        return jsonify({'error': 'Segmentation failed', 'details': str(e)}), 500

@app.route('/automatic_segment', methods=['POST'])
def automatic_segment():
    """Perform automatic segmentation using YOLO."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400
    file = request.files['file']
    if file.filename == '':
        return jsonify({'error': 'No file selected'}), 400

    input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
    file.save(input_path)

    try:
        # Perform YOLO segmentation
        results = yolo_model.predict(input_path, save=False, save_txt=False)
        output_folder = UPLOAD_FOLDERS['automatic_segmented']
        os.makedirs(output_folder, exist_ok=True)

        chips_data = []
        chips = []
        voids = []

        # Process results and save segmented images
        for result in results:
            annotated_image = result.plot()
            result_filename = f"{file.filename.rsplit('.', 1)[0]}_pred.jpg"
            result_path = os.path.join(output_folder, result_filename)
            Image.fromarray(annotated_image).save(result_path)

            # Separate chips and voids
            for i, label in enumerate(result.boxes.cls):  # YOLO labels
                label_name = result.names[int(label)]  # Get label name (e.g., 'chip' or 'void')
                box = result.boxes.xyxy[i].cpu().numpy()  # Bounding box (x1, y1, x2, y2)
                area = float((box[2] - box[0]) * (box[3] - box[1]))  # Calculate area

                if label_name == 'chip':
                    chips.append({'box': box, 'area': area, 'voids': []})
                elif label_name == 'void':
                    voids.append({'box': box, 'area': area})

            # Assign voids to chips based on proximity
            for void in voids:
                void_centroid = [
                    (void['box'][0] + void['box'][2]) / 2,  # x centroid
                    (void['box'][1] + void['box'][3]) / 2   # y centroid
                ]
                for chip in chips:
                    # Check if void centroid is within chip bounding box
                    if (chip['box'][0] <= void_centroid[0] <= chip['box'][2] and
                            chip['box'][1] <= void_centroid[1] <= chip['box'][3]):
                        chip['voids'].append(void)
                        break

            # Calculate metrics for each chip
            for idx, chip in enumerate(chips):
                chip_area = chip['area']
                total_void_area = sum([float(void['area']) for void in chip['voids']])
                max_void_area = max([float(void['area']) for void in chip['voids']], default=0)

                void_percentage = (total_void_area / chip_area) * 100 if chip_area > 0 else 0
                max_void_percentage = (max_void_area / chip_area) * 100 if chip_area > 0 else 0

                chips_data.append({
                    "chip_number": int(idx + 1),
                    "chip_area": round(chip_area, 2),
                    "void_percentage": round(void_percentage, 2),
                    "max_void_percentage": round(max_void_percentage, 2)
                })

        # Return the segmented image URL and table data
        segmented_url = f"/static/uploads/segmented/automatic/{result_filename}"
        return jsonify({
            "segmented_url": segmented_url,  # Use the URL for frontend access
            "table_data": {
                "image_name": file.filename,
                "chips": chips_data
            }
        })

    except Exception as e:
        print(f"Error in automatic segmentation: {e}")
        return jsonify({'error': 'Segmentation failed.'}), 500

@app.route('/save_both', methods=['POST'])
def save_both():
    """Save both the image and masks into the history folders."""
    data = request.json
    image_name = data.get('image_name')

    if not image_name:
        return jsonify({'error': 'Image name not provided'}), 400

    try:
        # Ensure image_name is a pure file name
        image_name = os.path.basename(image_name)  # Strip any directory path
        print(f"Sanitized Image Name: {image_name}")

        # Correctly resolve the input image path
        input_image_path = os.path.join(UPLOAD_FOLDERS['input'], image_name)
        if not os.path.exists(input_image_path):
            print(f"Input image does not exist: {input_image_path}")
            return jsonify({'error': f'Input image not found: {input_image_path}'}), 404

        # Copy the image to history/images
        image_history_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
        os.makedirs(os.path.dirname(image_history_path), exist_ok=True)
        shutil.copy(input_image_path, image_history_path)
        print(f"Image saved to history: {image_history_path}")

        # Backup void mask
        void_mask_path = os.path.join(UPLOAD_FOLDERS['mask_voids'], 'raw_mask.png')
        if os.path.exists(void_mask_path):
            void_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
            os.makedirs(os.path.dirname(void_mask_history_path), exist_ok=True)
            shutil.copy(void_mask_path, void_mask_history_path)
            print(f"Voids mask saved to history: {void_mask_history_path}")
        else:
            print(f"Voids mask not found: {void_mask_path}")

        # Backup chip mask
        chip_mask_path = os.path.join(UPLOAD_FOLDERS['mask_chips'], 'raw_mask.png')
        if os.path.exists(chip_mask_path):
            chip_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
            os.makedirs(os.path.dirname(chip_mask_history_path), exist_ok=True)
            shutil.copy(chip_mask_path, chip_mask_history_path)
            print(f"Chips mask saved to history: {chip_mask_history_path}")
        else:
            print(f"Chips mask not found: {chip_mask_path}")

        return jsonify({'message': 'Image and masks saved successfully!'}), 200

    except Exception as e:
        print(f"Error saving files: {e}")
        return jsonify({'error': 'Failed to save files.', 'details': str(e)}), 500

@app.route('/get_history', methods=['GET'])
def get_history():
    try:
        saved_images = os.listdir(HISTORY_FOLDERS['images'])
        return jsonify({'status': 'success', 'images': saved_images}), 200
    except Exception as e:
        return jsonify({'status': 'error', 'message': f'Failed to fetch history: {e}'}), 500


@app.route('/delete_history_item', methods=['POST'])
def delete_history_item():
    data = request.json
    image_name = data.get('image_name')

    if not image_name:
        return jsonify({'error': 'Image name not provided'}), 400

    try:
        image_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
        if os.path.exists(image_path):
            os.remove(image_path)

        void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
        if os.path.exists(void_mask_path):
            os.remove(void_mask_path)

        chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
        if os.path.exists(chip_mask_path):
            os.remove(chip_mask_path)

        return jsonify({'message': f'{image_name} and associated masks deleted successfully.'}), 200
    except Exception as e:
        return jsonify({'error': f'Failed to delete files: {e}'}), 500

# Lock for training status updates
status_lock = Lock()

def update_training_status(key, value):
    """Thread-safe update for training status."""
    with status_lock:
        training_status[key] = value

@app.route('/retrain_model', methods=['POST'])
def retrain_model():
    """Handle retrain model workflow."""
    global training_status

    if training_status.get('running', False):
        return jsonify({'error': 'Training is already in progress'}), 400

    try:
        # Update training status
        update_training_status('running', True)
        update_training_status('cancelled', False)
        logging.info("Training status updated. Starting training workflow.")

        # Backup masks and images
        backup_masks_and_images()
        logging.info("Backup completed successfully.")

        # Prepare YOLO labels
        prepare_yolo_labels()
        logging.info("YOLO labels prepared successfully.")

        # Start YOLO training in a separate thread
        threading.Thread(target=run_yolo_training).start()
        return jsonify({'message': 'Training started successfully!'}), 200

    except Exception as e:
        logging.error(f"Error during training preparation: {e}")
        update_training_status('running', False)
        return jsonify({'error': f"Failed to start training: {e}"}), 500
        
def prepare_yolo_labels():
    """Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
    images_folder = HISTORY_FOLDERS['images']  # Use history images as the source
    train_labels_folder = DATASET_FOLDERS['train_labels']
    train_images_folder = DATASET_FOLDERS['train_images']
    val_labels_folder = DATASET_FOLDERS['val_labels']
    val_images_folder = DATASET_FOLDERS['val_images']

    # Ensure destination directories exist
    os.makedirs(train_labels_folder, exist_ok=True)
    os.makedirs(train_images_folder, exist_ok=True)
    os.makedirs(val_labels_folder, exist_ok=True)
    os.makedirs(val_images_folder, exist_ok=True)

    try:
        all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
        random.shuffle(all_images)  # Shuffle the images for randomness

        # Determine split index
        split_idx = int(len(all_images) * 0.8)  # 80% for training, 20% for validation

        # Split images into train and validation sets
        train_images = all_images[:split_idx]
        val_images = all_images[split_idx:]

        # Process training images
        for image_name in train_images:
            process_image_and_mask(
                image_name,
                source_images_folder=images_folder,
                dest_images_folder=train_images_folder,
                dest_labels_folder=train_labels_folder
            )

        # Process validation images
        for image_name in val_images:
            process_image_and_mask(
                image_name,
                source_images_folder=images_folder,
                dest_images_folder=val_images_folder,
                dest_labels_folder=val_labels_folder
            )

        logging.info("YOLO labels prepared, and images split into train and validation successfully.")

    except Exception as e:
        logging.error(f"Error in preparing YOLO labels: {e}")
        raise
  
import random

def prepare_yolo_labels():
    """Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
    images_folder = HISTORY_FOLDERS['images']  # Use history images as the source
    train_labels_folder = DATASET_FOLDERS['train_labels']
    train_images_folder = DATASET_FOLDERS['train_images']
    val_labels_folder = DATASET_FOLDERS['val_labels']
    val_images_folder = DATASET_FOLDERS['val_images']

    # Ensure destination directories exist
    os.makedirs(train_labels_folder, exist_ok=True)
    os.makedirs(train_images_folder, exist_ok=True)
    os.makedirs(val_labels_folder, exist_ok=True)
    os.makedirs(val_images_folder, exist_ok=True)

    try:
        all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
        random.shuffle(all_images)  # Shuffle the images for randomness

        # Determine split index
        split_idx = int(len(all_images) * 0.8)  # 80% for training, 20% for validation

        # Split images into train and validation sets
        train_images = all_images[:split_idx]
        val_images = all_images[split_idx:]

        # Process training images
        for image_name in train_images:
            process_image_and_mask(
                image_name,
                source_images_folder=images_folder,
                dest_images_folder=train_images_folder,
                dest_labels_folder=train_labels_folder
            )

        # Process validation images
        for image_name in val_images:
            process_image_and_mask(
                image_name,
                source_images_folder=images_folder,
                dest_images_folder=val_images_folder,
                dest_labels_folder=val_labels_folder
            )

        logging.info("YOLO labels prepared, and images split into train and validation successfully.")

    except Exception as e:
        logging.error(f"Error in preparing YOLO labels: {e}")
        raise


def process_image_and_mask(image_name, source_images_folder, dest_images_folder, dest_labels_folder):
    """
    Process a single image and its masks, saving them in the appropriate YOLO format.
    """
    try:
        image_path = os.path.join(source_images_folder, image_name)
        label_file_path = os.path.join(dest_labels_folder, f"{os.path.splitext(image_name)[0]}.txt")

        # Copy image to the destination images folder
        shutil.copy(image_path, os.path.join(dest_images_folder, image_name))

        # Clear the label file if it exists
        if os.path.exists(label_file_path):
            os.remove(label_file_path)

        # Process void mask
        void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
        if os.path.exists(void_mask_path):
            convert_mask_to_yolo(
                mask_path=void_mask_path,
                image_path=image_path,
                class_id=0,  # Void class
                output_path=label_file_path
            )

        # Process chip mask
        chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
        if os.path.exists(chip_mask_path):
            convert_mask_to_yolo(
                mask_path=chip_mask_path,
                image_path=image_path,
                class_id=1,  # Chip class
                output_path=label_file_path,
                append=True  # Append chip annotations
            )

        logging.info(f"Processed {image_name} into YOLO format.")
    except Exception as e:
        logging.error(f"Error processing {image_name}: {e}")
        raise
  
def backup_masks_and_images():
    """Backup current masks and images from history folders."""
    temp_backup_paths = {
        'voids': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/voids'),
        'chips': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/chips'),
        'images': os.path.join(DATASET_FOLDERS['temp_backup'], 'images')
    }

    # Prepare all backup directories
    for path in temp_backup_paths.values():
        if os.path.exists(path):
            shutil.rmtree(path)
        os.makedirs(path, exist_ok=True)

    try:
        # Backup images from history
        for file in os.listdir(HISTORY_FOLDERS['images']):
            src_image_path = os.path.join(HISTORY_FOLDERS['images'], file)
            dst_image_path = os.path.join(temp_backup_paths['images'], file)
            shutil.copy(src_image_path, dst_image_path)

        # Backup void masks from history
        for file in os.listdir(HISTORY_FOLDERS['masks_void']):
            src_void_path = os.path.join(HISTORY_FOLDERS['masks_void'], file)
            dst_void_path = os.path.join(temp_backup_paths['voids'], file)
            shutil.copy(src_void_path, dst_void_path)

        # Backup chip masks from history
        for file in os.listdir(HISTORY_FOLDERS['masks_chip']):
            src_chip_path = os.path.join(HISTORY_FOLDERS['masks_chip'], file)
            dst_chip_path = os.path.join(temp_backup_paths['chips'], file)
            shutil.copy(src_chip_path, dst_chip_path)

        logging.info("Masks and images backed up successfully from history.")
    except Exception as e:
        logging.error(f"Error during backup: {e}")
        raise RuntimeError("Backup process failed.")

def run_yolo_training(num_epochs=10):
    """Run YOLO training process."""
    global training_process

    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        data_cfg_path = os.path.join(BASE_DIR, "models/data.yaml")  # Ensure correct YAML path

        logging.info(f"Starting YOLO training on {device} with {num_epochs} epochs.")
        logging.info(f"Using dataset configuration: {data_cfg_path}")

        training_command = [
            "yolo",
            "train",
            f"data={data_cfg_path}",
            f"model={os.path.join(DATASET_FOLDERS['models'], 'best.pt')}",
            f"device={device}",
            f"epochs={num_epochs}",
            "project=runs",
            "name=train"
        ]

        training_process = subprocess.Popen(
            training_command,
            stdout=subprocess.PIPE,
            stderr=subprocess.STDOUT,
            text=True,
            env=os.environ.copy(),
        )

        # Display and log output in real time
        for line in iter(training_process.stdout.readline, ''):
            print(line.strip())
            logging.info(line.strip())
            socketio.emit('training_update', {'message': line.strip()})  # Send updates to the frontend

        training_process.wait()

        if training_process.returncode == 0:
            finalize_training()  # Finalize successfully completed training
        else:
            raise RuntimeError("YOLO training process failed. Check logs for details.")
    except Exception as e:
        logging.error(f"Training error: {e}")
        restore_backup()  # Restore the dataset and masks

        # Emit training error event to the frontend
        socketio.emit('training_status', {'status': 'error', 'message': f"Training failed: {str(e)}"})
    finally:
        update_training_status('running', False)
        training_process = None  # Reset the process


@socketio.on('cancel_training')
def handle_cancel_training():
    """Cancel the YOLO training process."""
    global training_process, training_status

    if not training_status.get('running', False):
        socketio.emit('button_update', {'action': 'retrain'})  # Update button to retrain
        return

    try:
        training_process.terminate()
        training_process.wait()
        training_status['running'] = False
        training_status['cancelled'] = True

        restore_backup()
        cleanup_train_val_directories()

        # Emit button state change
        socketio.emit('button_update', {'action': 'retrain'})
        socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
    except Exception as e:
        logging.error(f"Error cancelling training: {e}")
        socketio.emit('training_status', {'status': 'error', 'message': str(e)})

def finalize_training():
    """Finalize training by promoting the new model and cleaning up."""
    try:
        # Locate the most recent training directory
        runs_dir = os.path.join(BASE_DIR, 'runs')
        if not os.path.exists(runs_dir):
            raise FileNotFoundError("Training runs directory does not exist.")

        # Get the latest training run folder
        latest_run = max(
            [os.path.join(runs_dir, d) for d in os.listdir(runs_dir)],
            key=os.path.getmtime
        )
        weights_dir = os.path.join(latest_run, 'weights')
        best_model_path = os.path.join(weights_dir, 'best.pt')

        if not os.path.exists(best_model_path):
            raise FileNotFoundError(f"'best.pt' not found in {weights_dir}.")

        # Backup the old model
        old_model_folder = DATASET_FOLDERS['models_old']
        os.makedirs(old_model_folder, exist_ok=True)
        existing_best_model = os.path.join(DATASET_FOLDERS['models'], 'best.pt')

        if os.path.exists(existing_best_model):
            timestamp = time.strftime("%Y%m%d_%H%M%S")
            shutil.move(existing_best_model, os.path.join(old_model_folder, f"old_{timestamp}.pt"))
            logging.info(f"Old model backed up to {old_model_folder}.")

        # Move the new model to the models directory
        new_model_dest = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
        shutil.move(best_model_path, new_model_dest)
        logging.info(f"New model saved to {new_model_dest}.")

        # Notify frontend that training is completed
        socketio.emit('training_status', {
            'status': 'completed',
            'message': 'Training completed successfully! Model saved as best.pt.'
        })

        # Clean up train/val directories
        cleanup_train_val_directories()
        logging.info("Train and validation directories cleaned up successfully.")

    except Exception as e:
        logging.error(f"Error finalizing training: {e}")
        # Emit error status to the frontend
        socketio.emit('training_status', {'status': 'error', 'message': f"Error finalizing training: {str(e)}"})

def restore_backup():
    """Restore the dataset and masks from the backup."""
    try:
        temp_backup = DATASET_FOLDERS['temp_backup']
        shutil.copytree(os.path.join(temp_backup, 'masks/voids'), UPLOAD_FOLDERS['mask_voids'], dirs_exist_ok=True)
        shutil.copytree(os.path.join(temp_backup, 'masks/chips'), UPLOAD_FOLDERS['mask_chips'], dirs_exist_ok=True)
        shutil.copytree(os.path.join(temp_backup, 'images'), UPLOAD_FOLDERS['input'], dirs_exist_ok=True)
        logging.info("Backup restored successfully.")
    except Exception as e:
        logging.error(f"Error restoring backup: {e}")

@app.route('/cancel_training', methods=['POST'])
def cancel_training():
    global training_process

    if training_process is None:
        logging.error("No active training process to terminate.")
        return jsonify({'error': 'No active training process to cancel.'}), 400

    try:
        training_process.terminate()
        training_process.wait()
        training_process = None  # Reset the process after termination

        # Update training status
        update_training_status('running', False)
        update_training_status('cancelled', True)

        # Check if the model is already saved as best.pt
        best_model_path = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
        if os.path.exists(best_model_path):
            logging.info(f"Model already saved as best.pt at {best_model_path}.")
            socketio.emit('button_update', {'action': 'revert'})  # Notify frontend to revert button state
        else:
            logging.info("Training canceled, but no new model was saved.")

        # Restore backup if needed
        restore_backup()
        cleanup_train_val_directories()

        # Emit status update to frontend
        socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
        return jsonify({'message': 'Training canceled and data restored successfully.'}), 200

    except Exception as e:
        logging.error(f"Error cancelling training: {e}")
        return jsonify({'error': f"Failed to cancel training: {e}"}), 500

@app.route('/clear_history', methods=['POST'])
def clear_history():
    try:
        for folder in [HISTORY_FOLDERS['images'], HISTORY_FOLDERS['masks_chip'], HISTORY_FOLDERS['masks_void']]:
            shutil.rmtree(folder, ignore_errors=True)
            os.makedirs(folder, exist_ok=True)  # Recreate the empty folder
        return jsonify({'message': 'History cleared successfully!'}), 200
    except Exception as e:
        return jsonify({'error': f'Failed to clear history: {e}'}), 500

@app.route('/training_status', methods=['GET'])
def get_training_status():
    """Return the current training status."""
    if training_status.get('running', False):
        return jsonify({'status': 'running', 'message': 'Training in progress.'}), 200
    elif training_status.get('cancelled', False):
        return jsonify({'status': 'cancelled', 'message': 'Training was cancelled.'}), 200
    return jsonify({'status': 'idle', 'message': 'No training is currently running.'}), 200

def cleanup_train_val_directories():
    """Clear the train and validation directories."""
    try:
        for folder in [DATASET_FOLDERS['train_images'], DATASET_FOLDERS['train_labels'], 
                       DATASET_FOLDERS['val_images'], DATASET_FOLDERS['val_labels']]:
            shutil.rmtree(folder, ignore_errors=True)  # Remove folder contents
            os.makedirs(folder, exist_ok=True)  # Recreate empty folders
        logging.info("Train and validation directories cleaned up successfully.")
    except Exception as e:
        logging.error(f"Error cleaning up train/val directories: {e}")


if __name__ == '__main__':
    multiprocessing.set_start_method('spawn')  # Required for multiprocessing on Windows
    app.run(debug=True, use_reloader=False)