File size: 33,054 Bytes
8078d22 7d9f9ef 8078d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
from flask import Flask, render_template, request, jsonify
from flask_socketio import SocketIO
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import shutil
import numpy as np
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
class Predictor:
def __init__(self, model_cfg, checkpoint, device):
self.device = device
self.model = build_sam2(model_cfg, checkpoint, device=device)
self.predictor = SAM2ImagePredictor(self.model)
self.image_set = False
def set_image(self, image):
"""Set the image for SAM prediction."""
self.image = image
self.predictor.set_image(image)
self.image_set = True
def predict(self, point_coords, point_labels, multimask_output=False):
"""Run SAM prediction."""
if not self.image_set:
raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
return self.predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
multimask_output=multimask_output
)
from utils.helpers import (
blend_mask_with_image,
save_mask_as_png,
convert_mask_to_yolo,
)
import torch
from ultralytics import YOLO
import threading
from threading import Lock
import subprocess
import time
import logging
import multiprocessing
import json
# Initialize Flask app and SocketIO
app = Flask(__name__)
socketio = SocketIO(app)
# Define Base Directory
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
# Folder structure with absolute paths
UPLOAD_FOLDERS = {
'input': os.path.join(BASE_DIR, 'static/uploads/input'),
'segmented_voids': os.path.join(BASE_DIR, 'static/uploads/segmented/voids'),
'segmented_chips': os.path.join(BASE_DIR, 'static/uploads/segmented/chips'),
'mask_voids': os.path.join(BASE_DIR, 'static/uploads/mask/voids'),
'mask_chips': os.path.join(BASE_DIR, 'static/uploads/mask/chips'),
'automatic_segmented': os.path.join(BASE_DIR, 'static/uploads/segmented/automatic'),
}
HISTORY_FOLDERS = {
'images': os.path.join(BASE_DIR, 'static/history/images'),
'masks_chip': os.path.join(BASE_DIR, 'static/history/masks/chip'),
'masks_void': os.path.join(BASE_DIR, 'static/history/masks/void'),
}
DATASET_FOLDERS = {
'train_images': os.path.join(BASE_DIR, 'dataset/train/images'),
'train_labels': os.path.join(BASE_DIR, 'dataset/train/labels'),
'val_images': os.path.join(BASE_DIR, 'dataset/val/images'),
'val_labels': os.path.join(BASE_DIR, 'dataset/val/labels'),
'temp_backup': os.path.join(BASE_DIR, 'temp_backup'),
'models': os.path.join(BASE_DIR, 'models'),
'models_old': os.path.join(BASE_DIR, 'models/old'),
}
# Ensure all folders exist
for folder_name, folder_path in {**UPLOAD_FOLDERS, **HISTORY_FOLDERS, **DATASET_FOLDERS}.items():
os.makedirs(folder_path, exist_ok=True)
logging.info(f"Ensured folder exists: {folder_name} -> {folder_path}")
training_process = None
def initialize_training_status():
"""Initialize global training status."""
global training_status
training_status = {'running': False, 'cancelled': False}
def persist_training_status():
"""Save training status to a file."""
with open(os.path.join(BASE_DIR, 'training_status.json'), 'w') as status_file:
json.dump(training_status, status_file)
def load_training_status():
"""Load training status from a file."""
global training_status
status_path = os.path.join(BASE_DIR, 'training_status.json')
if os.path.exists(status_path):
with open(status_path, 'r') as status_file:
training_status = json.load(status_file)
else:
training_status = {'running': False, 'cancelled': False}
load_training_status()
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0"
# Initialize SAM Predictor
MODEL_CFG = os.path.join(BASE_DIR, "sam2", "sam2_hiera_l.yaml")
CHECKPOINT = os.path.join(BASE_DIR, "sam2", "sam2.1_hiera_large.pt")
print(f"Chargement de {MODEL_CFG} et {CHECKPOINT} sur l'appareil .")
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
predictor = Predictor(MODEL_CFG, CHECKPOINT, DEVICE)
# Initialize YOLO-seg
YOLO_CFG = os.path.join(DATASET_FOLDERS['models'], "best.pt")
yolo_model = YOLO(YOLO_CFG)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler(os.path.join(BASE_DIR, "app.log")) # Log to a file
]
)
@app.route('/')
def index():
"""Serve the main UI."""
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_image():
"""Handle image uploads."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No file selected'}), 400
# Save the uploaded file to the input folder
input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
file.save(input_path)
# Set the uploaded image in the predictor
image = np.array(Image.open(input_path).convert("RGB"))
predictor.set_image(image)
# Return a web-accessible URL instead of the file system path
web_accessible_url = f"/static/uploads/input/{file.filename}"
print(f"Image uploaded and set for prediction: {input_path}")
return jsonify({'image_url': web_accessible_url})
@app.route('/segment', methods=['POST'])
def segment():
"""
Perform segmentation and return the blended image URL.
"""
try:
# Extract data from request
data = request.json
points = np.array(data.get('points', []))
labels = np.array(data.get('labels', []))
current_class = data.get('class', 'voids') # Default to 'voids' if class not provided
# Ensure predictor has an image set
if not predictor.image_set:
raise ValueError("No image set for prediction.")
# Perform SAM prediction
masks, _, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=False
)
# Check if masks exist and have non-zero elements
if masks is None or masks.size == 0:
raise RuntimeError("No masks were generated by the predictor.")
# Define output paths based on class
mask_folder = UPLOAD_FOLDERS.get(f'mask_{current_class}')
segmented_folder = UPLOAD_FOLDERS.get(f'segmented_{current_class}')
if not mask_folder or not segmented_folder:
raise ValueError(f"Invalid class '{current_class}' provided.")
os.makedirs(mask_folder, exist_ok=True)
os.makedirs(segmented_folder, exist_ok=True)
# Save the raw mask
mask_path = os.path.join(mask_folder, 'raw_mask.png')
save_mask_as_png(masks[0], mask_path)
# Generate blended image
blend_color = [34, 139, 34] if current_class == 'voids' else [30, 144, 255] # Green for voids, blue for chips
blended_image = blend_mask_with_image(predictor.image, masks[0], blend_color)
# Save blended image
blended_filename = f"blended_{current_class}.png"
blended_path = os.path.join(segmented_folder, blended_filename)
Image.fromarray(blended_image).save(blended_path)
# Return URL for frontend access
segmented_url = f"/static/uploads/segmented/{current_class}/{blended_filename}"
logging.info(f"Segmentation completed for {current_class}. Points: {points}, Labels: {labels}")
return jsonify({'segmented_url': segmented_url})
except ValueError as ve:
logging.error(f"Value error during segmentation: {ve}")
return jsonify({'error': str(ve)}), 400
except Exception as e:
logging.error(f"Unexpected error during segmentation: {e}")
return jsonify({'error': 'Segmentation failed', 'details': str(e)}), 500
@app.route('/automatic_segment', methods=['POST'])
def automatic_segment():
"""Perform automatic segmentation using YOLO."""
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No file selected'}), 400
input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
file.save(input_path)
try:
# Perform YOLO segmentation
results = yolo_model.predict(input_path, save=False, save_txt=False)
output_folder = UPLOAD_FOLDERS['automatic_segmented']
os.makedirs(output_folder, exist_ok=True)
chips_data = []
chips = []
voids = []
# Process results and save segmented images
for result in results:
annotated_image = result.plot()
result_filename = f"{file.filename.rsplit('.', 1)[0]}_pred.jpg"
result_path = os.path.join(output_folder, result_filename)
Image.fromarray(annotated_image).save(result_path)
# Separate chips and voids
for i, label in enumerate(result.boxes.cls): # YOLO labels
label_name = result.names[int(label)] # Get label name (e.g., 'chip' or 'void')
box = result.boxes.xyxy[i].cpu().numpy() # Bounding box (x1, y1, x2, y2)
area = float((box[2] - box[0]) * (box[3] - box[1])) # Calculate area
if label_name == 'chip':
chips.append({'box': box, 'area': area, 'voids': []})
elif label_name == 'void':
voids.append({'box': box, 'area': area})
# Assign voids to chips based on proximity
for void in voids:
void_centroid = [
(void['box'][0] + void['box'][2]) / 2, # x centroid
(void['box'][1] + void['box'][3]) / 2 # y centroid
]
for chip in chips:
# Check if void centroid is within chip bounding box
if (chip['box'][0] <= void_centroid[0] <= chip['box'][2] and
chip['box'][1] <= void_centroid[1] <= chip['box'][3]):
chip['voids'].append(void)
break
# Calculate metrics for each chip
for idx, chip in enumerate(chips):
chip_area = chip['area']
total_void_area = sum([float(void['area']) for void in chip['voids']])
max_void_area = max([float(void['area']) for void in chip['voids']], default=0)
void_percentage = (total_void_area / chip_area) * 100 if chip_area > 0 else 0
max_void_percentage = (max_void_area / chip_area) * 100 if chip_area > 0 else 0
chips_data.append({
"chip_number": int(idx + 1),
"chip_area": round(chip_area, 2),
"void_percentage": round(void_percentage, 2),
"max_void_percentage": round(max_void_percentage, 2)
})
# Return the segmented image URL and table data
segmented_url = f"/static/uploads/segmented/automatic/{result_filename}"
return jsonify({
"segmented_url": segmented_url, # Use the URL for frontend access
"table_data": {
"image_name": file.filename,
"chips": chips_data
}
})
except Exception as e:
print(f"Error in automatic segmentation: {e}")
return jsonify({'error': 'Segmentation failed.'}), 500
@app.route('/save_both', methods=['POST'])
def save_both():
"""Save both the image and masks into the history folders."""
data = request.json
image_name = data.get('image_name')
if not image_name:
return jsonify({'error': 'Image name not provided'}), 400
try:
# Ensure image_name is a pure file name
image_name = os.path.basename(image_name) # Strip any directory path
print(f"Sanitized Image Name: {image_name}")
# Correctly resolve the input image path
input_image_path = os.path.join(UPLOAD_FOLDERS['input'], image_name)
if not os.path.exists(input_image_path):
print(f"Input image does not exist: {input_image_path}")
return jsonify({'error': f'Input image not found: {input_image_path}'}), 404
# Copy the image to history/images
image_history_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
os.makedirs(os.path.dirname(image_history_path), exist_ok=True)
shutil.copy(input_image_path, image_history_path)
print(f"Image saved to history: {image_history_path}")
# Backup void mask
void_mask_path = os.path.join(UPLOAD_FOLDERS['mask_voids'], 'raw_mask.png')
if os.path.exists(void_mask_path):
void_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
os.makedirs(os.path.dirname(void_mask_history_path), exist_ok=True)
shutil.copy(void_mask_path, void_mask_history_path)
print(f"Voids mask saved to history: {void_mask_history_path}")
else:
print(f"Voids mask not found: {void_mask_path}")
# Backup chip mask
chip_mask_path = os.path.join(UPLOAD_FOLDERS['mask_chips'], 'raw_mask.png')
if os.path.exists(chip_mask_path):
chip_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
os.makedirs(os.path.dirname(chip_mask_history_path), exist_ok=True)
shutil.copy(chip_mask_path, chip_mask_history_path)
print(f"Chips mask saved to history: {chip_mask_history_path}")
else:
print(f"Chips mask not found: {chip_mask_path}")
return jsonify({'message': 'Image and masks saved successfully!'}), 200
except Exception as e:
print(f"Error saving files: {e}")
return jsonify({'error': 'Failed to save files.', 'details': str(e)}), 500
@app.route('/get_history', methods=['GET'])
def get_history():
try:
saved_images = os.listdir(HISTORY_FOLDERS['images'])
return jsonify({'status': 'success', 'images': saved_images}), 200
except Exception as e:
return jsonify({'status': 'error', 'message': f'Failed to fetch history: {e}'}), 500
@app.route('/delete_history_item', methods=['POST'])
def delete_history_item():
data = request.json
image_name = data.get('image_name')
if not image_name:
return jsonify({'error': 'Image name not provided'}), 400
try:
image_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
if os.path.exists(image_path):
os.remove(image_path)
void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
if os.path.exists(void_mask_path):
os.remove(void_mask_path)
chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
if os.path.exists(chip_mask_path):
os.remove(chip_mask_path)
return jsonify({'message': f'{image_name} and associated masks deleted successfully.'}), 200
except Exception as e:
return jsonify({'error': f'Failed to delete files: {e}'}), 500
# Lock for training status updates
status_lock = Lock()
def update_training_status(key, value):
"""Thread-safe update for training status."""
with status_lock:
training_status[key] = value
@app.route('/retrain_model', methods=['POST'])
def retrain_model():
"""Handle retrain model workflow."""
global training_status
if training_status.get('running', False):
return jsonify({'error': 'Training is already in progress'}), 400
try:
# Update training status
update_training_status('running', True)
update_training_status('cancelled', False)
logging.info("Training status updated. Starting training workflow.")
# Backup masks and images
backup_masks_and_images()
logging.info("Backup completed successfully.")
# Prepare YOLO labels
prepare_yolo_labels()
logging.info("YOLO labels prepared successfully.")
# Start YOLO training in a separate thread
threading.Thread(target=run_yolo_training).start()
return jsonify({'message': 'Training started successfully!'}), 200
except Exception as e:
logging.error(f"Error during training preparation: {e}")
update_training_status('running', False)
return jsonify({'error': f"Failed to start training: {e}"}), 500
def prepare_yolo_labels():
"""Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
images_folder = HISTORY_FOLDERS['images'] # Use history images as the source
train_labels_folder = DATASET_FOLDERS['train_labels']
train_images_folder = DATASET_FOLDERS['train_images']
val_labels_folder = DATASET_FOLDERS['val_labels']
val_images_folder = DATASET_FOLDERS['val_images']
# Ensure destination directories exist
os.makedirs(train_labels_folder, exist_ok=True)
os.makedirs(train_images_folder, exist_ok=True)
os.makedirs(val_labels_folder, exist_ok=True)
os.makedirs(val_images_folder, exist_ok=True)
try:
all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
random.shuffle(all_images) # Shuffle the images for randomness
# Determine split index
split_idx = int(len(all_images) * 0.8) # 80% for training, 20% for validation
# Split images into train and validation sets
train_images = all_images[:split_idx]
val_images = all_images[split_idx:]
# Process training images
for image_name in train_images:
process_image_and_mask(
image_name,
source_images_folder=images_folder,
dest_images_folder=train_images_folder,
dest_labels_folder=train_labels_folder
)
# Process validation images
for image_name in val_images:
process_image_and_mask(
image_name,
source_images_folder=images_folder,
dest_images_folder=val_images_folder,
dest_labels_folder=val_labels_folder
)
logging.info("YOLO labels prepared, and images split into train and validation successfully.")
except Exception as e:
logging.error(f"Error in preparing YOLO labels: {e}")
raise
import random
def prepare_yolo_labels():
"""Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
images_folder = HISTORY_FOLDERS['images'] # Use history images as the source
train_labels_folder = DATASET_FOLDERS['train_labels']
train_images_folder = DATASET_FOLDERS['train_images']
val_labels_folder = DATASET_FOLDERS['val_labels']
val_images_folder = DATASET_FOLDERS['val_images']
# Ensure destination directories exist
os.makedirs(train_labels_folder, exist_ok=True)
os.makedirs(train_images_folder, exist_ok=True)
os.makedirs(val_labels_folder, exist_ok=True)
os.makedirs(val_images_folder, exist_ok=True)
try:
all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
random.shuffle(all_images) # Shuffle the images for randomness
# Determine split index
split_idx = int(len(all_images) * 0.8) # 80% for training, 20% for validation
# Split images into train and validation sets
train_images = all_images[:split_idx]
val_images = all_images[split_idx:]
# Process training images
for image_name in train_images:
process_image_and_mask(
image_name,
source_images_folder=images_folder,
dest_images_folder=train_images_folder,
dest_labels_folder=train_labels_folder
)
# Process validation images
for image_name in val_images:
process_image_and_mask(
image_name,
source_images_folder=images_folder,
dest_images_folder=val_images_folder,
dest_labels_folder=val_labels_folder
)
logging.info("YOLO labels prepared, and images split into train and validation successfully.")
except Exception as e:
logging.error(f"Error in preparing YOLO labels: {e}")
raise
def process_image_and_mask(image_name, source_images_folder, dest_images_folder, dest_labels_folder):
"""
Process a single image and its masks, saving them in the appropriate YOLO format.
"""
try:
image_path = os.path.join(source_images_folder, image_name)
label_file_path = os.path.join(dest_labels_folder, f"{os.path.splitext(image_name)[0]}.txt")
# Copy image to the destination images folder
shutil.copy(image_path, os.path.join(dest_images_folder, image_name))
# Clear the label file if it exists
if os.path.exists(label_file_path):
os.remove(label_file_path)
# Process void mask
void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
if os.path.exists(void_mask_path):
convert_mask_to_yolo(
mask_path=void_mask_path,
image_path=image_path,
class_id=0, # Void class
output_path=label_file_path
)
# Process chip mask
chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
if os.path.exists(chip_mask_path):
convert_mask_to_yolo(
mask_path=chip_mask_path,
image_path=image_path,
class_id=1, # Chip class
output_path=label_file_path,
append=True # Append chip annotations
)
logging.info(f"Processed {image_name} into YOLO format.")
except Exception as e:
logging.error(f"Error processing {image_name}: {e}")
raise
def backup_masks_and_images():
"""Backup current masks and images from history folders."""
temp_backup_paths = {
'voids': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/voids'),
'chips': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/chips'),
'images': os.path.join(DATASET_FOLDERS['temp_backup'], 'images')
}
# Prepare all backup directories
for path in temp_backup_paths.values():
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path, exist_ok=True)
try:
# Backup images from history
for file in os.listdir(HISTORY_FOLDERS['images']):
src_image_path = os.path.join(HISTORY_FOLDERS['images'], file)
dst_image_path = os.path.join(temp_backup_paths['images'], file)
shutil.copy(src_image_path, dst_image_path)
# Backup void masks from history
for file in os.listdir(HISTORY_FOLDERS['masks_void']):
src_void_path = os.path.join(HISTORY_FOLDERS['masks_void'], file)
dst_void_path = os.path.join(temp_backup_paths['voids'], file)
shutil.copy(src_void_path, dst_void_path)
# Backup chip masks from history
for file in os.listdir(HISTORY_FOLDERS['masks_chip']):
src_chip_path = os.path.join(HISTORY_FOLDERS['masks_chip'], file)
dst_chip_path = os.path.join(temp_backup_paths['chips'], file)
shutil.copy(src_chip_path, dst_chip_path)
logging.info("Masks and images backed up successfully from history.")
except Exception as e:
logging.error(f"Error during backup: {e}")
raise RuntimeError("Backup process failed.")
def run_yolo_training(num_epochs=10):
"""Run YOLO training process."""
global training_process
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
data_cfg_path = os.path.join(BASE_DIR, "models/data.yaml") # Ensure correct YAML path
logging.info(f"Starting YOLO training on {device} with {num_epochs} epochs.")
logging.info(f"Using dataset configuration: {data_cfg_path}")
training_command = [
"yolo",
"train",
f"data={data_cfg_path}",
f"model={os.path.join(DATASET_FOLDERS['models'], 'best.pt')}",
f"device={device}",
f"epochs={num_epochs}",
"project=runs",
"name=train"
]
training_process = subprocess.Popen(
training_command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
env=os.environ.copy(),
)
# Display and log output in real time
for line in iter(training_process.stdout.readline, ''):
print(line.strip())
logging.info(line.strip())
socketio.emit('training_update', {'message': line.strip()}) # Send updates to the frontend
training_process.wait()
if training_process.returncode == 0:
finalize_training() # Finalize successfully completed training
else:
raise RuntimeError("YOLO training process failed. Check logs for details.")
except Exception as e:
logging.error(f"Training error: {e}")
restore_backup() # Restore the dataset and masks
# Emit training error event to the frontend
socketio.emit('training_status', {'status': 'error', 'message': f"Training failed: {str(e)}"})
finally:
update_training_status('running', False)
training_process = None # Reset the process
@socketio.on('cancel_training')
def handle_cancel_training():
"""Cancel the YOLO training process."""
global training_process, training_status
if not training_status.get('running', False):
socketio.emit('button_update', {'action': 'retrain'}) # Update button to retrain
return
try:
training_process.terminate()
training_process.wait()
training_status['running'] = False
training_status['cancelled'] = True
restore_backup()
cleanup_train_val_directories()
# Emit button state change
socketio.emit('button_update', {'action': 'retrain'})
socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
except Exception as e:
logging.error(f"Error cancelling training: {e}")
socketio.emit('training_status', {'status': 'error', 'message': str(e)})
def finalize_training():
"""Finalize training by promoting the new model and cleaning up."""
try:
# Locate the most recent training directory
runs_dir = os.path.join(BASE_DIR, 'runs')
if not os.path.exists(runs_dir):
raise FileNotFoundError("Training runs directory does not exist.")
# Get the latest training run folder
latest_run = max(
[os.path.join(runs_dir, d) for d in os.listdir(runs_dir)],
key=os.path.getmtime
)
weights_dir = os.path.join(latest_run, 'weights')
best_model_path = os.path.join(weights_dir, 'best.pt')
if not os.path.exists(best_model_path):
raise FileNotFoundError(f"'best.pt' not found in {weights_dir}.")
# Backup the old model
old_model_folder = DATASET_FOLDERS['models_old']
os.makedirs(old_model_folder, exist_ok=True)
existing_best_model = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
if os.path.exists(existing_best_model):
timestamp = time.strftime("%Y%m%d_%H%M%S")
shutil.move(existing_best_model, os.path.join(old_model_folder, f"old_{timestamp}.pt"))
logging.info(f"Old model backed up to {old_model_folder}.")
# Move the new model to the models directory
new_model_dest = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
shutil.move(best_model_path, new_model_dest)
logging.info(f"New model saved to {new_model_dest}.")
# Notify frontend that training is completed
socketio.emit('training_status', {
'status': 'completed',
'message': 'Training completed successfully! Model saved as best.pt.'
})
# Clean up train/val directories
cleanup_train_val_directories()
logging.info("Train and validation directories cleaned up successfully.")
except Exception as e:
logging.error(f"Error finalizing training: {e}")
# Emit error status to the frontend
socketio.emit('training_status', {'status': 'error', 'message': f"Error finalizing training: {str(e)}"})
def restore_backup():
"""Restore the dataset and masks from the backup."""
try:
temp_backup = DATASET_FOLDERS['temp_backup']
shutil.copytree(os.path.join(temp_backup, 'masks/voids'), UPLOAD_FOLDERS['mask_voids'], dirs_exist_ok=True)
shutil.copytree(os.path.join(temp_backup, 'masks/chips'), UPLOAD_FOLDERS['mask_chips'], dirs_exist_ok=True)
shutil.copytree(os.path.join(temp_backup, 'images'), UPLOAD_FOLDERS['input'], dirs_exist_ok=True)
logging.info("Backup restored successfully.")
except Exception as e:
logging.error(f"Error restoring backup: {e}")
@app.route('/cancel_training', methods=['POST'])
def cancel_training():
global training_process
if training_process is None:
logging.error("No active training process to terminate.")
return jsonify({'error': 'No active training process to cancel.'}), 400
try:
training_process.terminate()
training_process.wait()
training_process = None # Reset the process after termination
# Update training status
update_training_status('running', False)
update_training_status('cancelled', True)
# Check if the model is already saved as best.pt
best_model_path = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
if os.path.exists(best_model_path):
logging.info(f"Model already saved as best.pt at {best_model_path}.")
socketio.emit('button_update', {'action': 'revert'}) # Notify frontend to revert button state
else:
logging.info("Training canceled, but no new model was saved.")
# Restore backup if needed
restore_backup()
cleanup_train_val_directories()
# Emit status update to frontend
socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
return jsonify({'message': 'Training canceled and data restored successfully.'}), 200
except Exception as e:
logging.error(f"Error cancelling training: {e}")
return jsonify({'error': f"Failed to cancel training: {e}"}), 500
@app.route('/clear_history', methods=['POST'])
def clear_history():
try:
for folder in [HISTORY_FOLDERS['images'], HISTORY_FOLDERS['masks_chip'], HISTORY_FOLDERS['masks_void']]:
shutil.rmtree(folder, ignore_errors=True)
os.makedirs(folder, exist_ok=True) # Recreate the empty folder
return jsonify({'message': 'History cleared successfully!'}), 200
except Exception as e:
return jsonify({'error': f'Failed to clear history: {e}'}), 500
@app.route('/training_status', methods=['GET'])
def get_training_status():
"""Return the current training status."""
if training_status.get('running', False):
return jsonify({'status': 'running', 'message': 'Training in progress.'}), 200
elif training_status.get('cancelled', False):
return jsonify({'status': 'cancelled', 'message': 'Training was cancelled.'}), 200
return jsonify({'status': 'idle', 'message': 'No training is currently running.'}), 200
def cleanup_train_val_directories():
"""Clear the train and validation directories."""
try:
for folder in [DATASET_FOLDERS['train_images'], DATASET_FOLDERS['train_labels'],
DATASET_FOLDERS['val_images'], DATASET_FOLDERS['val_labels']]:
shutil.rmtree(folder, ignore_errors=True) # Remove folder contents
os.makedirs(folder, exist_ok=True) # Recreate empty folders
logging.info("Train and validation directories cleaned up successfully.")
except Exception as e:
logging.error(f"Error cleaning up train/val directories: {e}")
if __name__ == '__main__':
multiprocessing.set_start_method('spawn') # Required for multiprocessing on Windows
app.run(debug=True, use_reloader=False)
|