|
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
import warnings
|
|
from threading import Thread
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
|
|
def get_sdpa_settings():
|
|
if torch.cuda.is_available():
|
|
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
|
|
|
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
|
if not use_flash_attn:
|
|
warnings.warn(
|
|
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
|
category=UserWarning,
|
|
stacklevel=2,
|
|
)
|
|
|
|
|
|
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
|
if pytorch_version < (2, 2):
|
|
warnings.warn(
|
|
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
|
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
|
category=UserWarning,
|
|
stacklevel=2,
|
|
)
|
|
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
|
else:
|
|
old_gpu = True
|
|
use_flash_attn = False
|
|
math_kernel_on = True
|
|
|
|
return old_gpu, use_flash_attn, math_kernel_on
|
|
|
|
|
|
def get_connected_components(mask):
|
|
"""
|
|
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
|
|
|
Inputs:
|
|
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
|
background.
|
|
|
|
Outputs:
|
|
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
|
for foreground pixels and 0 for background pixels.
|
|
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
|
components for foreground pixels and 0 for background pixels.
|
|
"""
|
|
from sam2 import _C
|
|
|
|
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
|
|
|
|
|
def mask_to_box(masks: torch.Tensor):
|
|
"""
|
|
compute bounding box given an input mask
|
|
|
|
Inputs:
|
|
- masks: [B, 1, H, W] masks, dtype=torch.Tensor
|
|
|
|
Returns:
|
|
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
|
"""
|
|
B, _, h, w = masks.shape
|
|
device = masks.device
|
|
xs = torch.arange(w, device=device, dtype=torch.int32)
|
|
ys = torch.arange(h, device=device, dtype=torch.int32)
|
|
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
|
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
|
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
|
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
|
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
|
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
|
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
|
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
|
|
|
return bbox_coords
|
|
|
|
|
|
def _load_img_as_tensor(img_path, image_size):
|
|
img_pil = Image.open(img_path)
|
|
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
|
if img_np.dtype == np.uint8:
|
|
img_np = img_np / 255.0
|
|
else:
|
|
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
|
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
|
video_width, video_height = img_pil.size
|
|
return img, video_height, video_width
|
|
|
|
|
|
class AsyncVideoFrameLoader:
|
|
"""
|
|
A list of video frames to be load asynchronously without blocking session start.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_paths,
|
|
image_size,
|
|
offload_video_to_cpu,
|
|
img_mean,
|
|
img_std,
|
|
compute_device,
|
|
):
|
|
self.img_paths = img_paths
|
|
self.image_size = image_size
|
|
self.offload_video_to_cpu = offload_video_to_cpu
|
|
self.img_mean = img_mean
|
|
self.img_std = img_std
|
|
|
|
self.images = [None] * len(img_paths)
|
|
|
|
self.exception = None
|
|
|
|
self.video_height = None
|
|
self.video_width = None
|
|
self.compute_device = compute_device
|
|
|
|
|
|
|
|
self.__getitem__(0)
|
|
|
|
|
|
def _load_frames():
|
|
try:
|
|
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
|
self.__getitem__(n)
|
|
except Exception as e:
|
|
self.exception = e
|
|
|
|
self.thread = Thread(target=_load_frames, daemon=True)
|
|
self.thread.start()
|
|
|
|
def __getitem__(self, index):
|
|
if self.exception is not None:
|
|
raise RuntimeError("Failure in frame loading thread") from self.exception
|
|
|
|
img = self.images[index]
|
|
if img is not None:
|
|
return img
|
|
|
|
img, video_height, video_width = _load_img_as_tensor(
|
|
self.img_paths[index], self.image_size
|
|
)
|
|
self.video_height = video_height
|
|
self.video_width = video_width
|
|
|
|
img -= self.img_mean
|
|
img /= self.img_std
|
|
if not self.offload_video_to_cpu:
|
|
img = img.to(self.compute_device, non_blocking=True)
|
|
self.images[index] = img
|
|
return img
|
|
|
|
def __len__(self):
|
|
return len(self.images)
|
|
|
|
|
|
def load_video_frames(
|
|
video_path,
|
|
image_size,
|
|
offload_video_to_cpu,
|
|
img_mean=(0.485, 0.456, 0.406),
|
|
img_std=(0.229, 0.224, 0.225),
|
|
async_loading_frames=False,
|
|
compute_device=torch.device("cuda"),
|
|
):
|
|
"""
|
|
Load the video frames from video_path. The frames are resized to image_size as in
|
|
the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
|
|
"""
|
|
is_bytes = isinstance(video_path, bytes)
|
|
is_str = isinstance(video_path, str)
|
|
is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
|
|
if is_bytes or is_mp4_path:
|
|
return load_video_frames_from_video_file(
|
|
video_path=video_path,
|
|
image_size=image_size,
|
|
offload_video_to_cpu=offload_video_to_cpu,
|
|
img_mean=img_mean,
|
|
img_std=img_std,
|
|
compute_device=compute_device,
|
|
)
|
|
elif is_str and os.path.isdir(video_path):
|
|
return load_video_frames_from_jpg_images(
|
|
video_path=video_path,
|
|
image_size=image_size,
|
|
offload_video_to_cpu=offload_video_to_cpu,
|
|
img_mean=img_mean,
|
|
img_std=img_std,
|
|
async_loading_frames=async_loading_frames,
|
|
compute_device=compute_device,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
"Only MP4 video and JPEG folder are supported at this moment"
|
|
)
|
|
|
|
|
|
def load_video_frames_from_jpg_images(
|
|
video_path,
|
|
image_size,
|
|
offload_video_to_cpu,
|
|
img_mean=(0.485, 0.456, 0.406),
|
|
img_std=(0.229, 0.224, 0.225),
|
|
async_loading_frames=False,
|
|
compute_device=torch.device("cuda"),
|
|
):
|
|
"""
|
|
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
|
|
|
The frames are resized to image_size x image_size and are loaded to GPU if
|
|
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
|
|
|
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
|
"""
|
|
if isinstance(video_path, str) and os.path.isdir(video_path):
|
|
jpg_folder = video_path
|
|
else:
|
|
raise NotImplementedError(
|
|
"Only JPEG frames are supported at this moment. For video files, you may use "
|
|
"ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
|
|
"```\n"
|
|
"ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
|
|
"```\n"
|
|
"where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
|
|
"ffmpeg to start the JPEG file from 00000.jpg."
|
|
)
|
|
|
|
frame_names = [
|
|
p
|
|
for p in os.listdir(jpg_folder)
|
|
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
|
]
|
|
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
|
num_frames = len(frame_names)
|
|
if num_frames == 0:
|
|
raise RuntimeError(f"no images found in {jpg_folder}")
|
|
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
|
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
|
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
|
|
|
if async_loading_frames:
|
|
lazy_images = AsyncVideoFrameLoader(
|
|
img_paths,
|
|
image_size,
|
|
offload_video_to_cpu,
|
|
img_mean,
|
|
img_std,
|
|
compute_device,
|
|
)
|
|
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
|
|
|
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
|
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
|
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
|
if not offload_video_to_cpu:
|
|
images = images.to(compute_device)
|
|
img_mean = img_mean.to(compute_device)
|
|
img_std = img_std.to(compute_device)
|
|
|
|
images -= img_mean
|
|
images /= img_std
|
|
return images, video_height, video_width
|
|
|
|
|
|
def load_video_frames_from_video_file(
|
|
video_path,
|
|
image_size,
|
|
offload_video_to_cpu,
|
|
img_mean=(0.485, 0.456, 0.406),
|
|
img_std=(0.229, 0.224, 0.225),
|
|
compute_device=torch.device("cuda"),
|
|
):
|
|
"""Load the video frames from a video file."""
|
|
import decord
|
|
|
|
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
|
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
|
|
|
decord.bridge.set_bridge("torch")
|
|
video_height, video_width, _ = decord.VideoReader(video_path).next().shape
|
|
|
|
images = []
|
|
for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
|
|
images.append(frame.permute(2, 0, 1))
|
|
|
|
images = torch.stack(images, dim=0).float() / 255.0
|
|
if not offload_video_to_cpu:
|
|
images = images.to(compute_device)
|
|
img_mean = img_mean.to(compute_device)
|
|
img_std = img_std.to(compute_device)
|
|
|
|
images -= img_mean
|
|
images /= img_std
|
|
return images, video_height, video_width
|
|
|
|
|
|
def fill_holes_in_mask_scores(mask, max_area):
|
|
"""
|
|
A post processor to fill small holes in mask scores with area under `max_area`.
|
|
"""
|
|
|
|
|
|
assert max_area > 0, "max_area must be positive"
|
|
|
|
input_mask = mask
|
|
try:
|
|
labels, areas = get_connected_components(mask <= 0)
|
|
is_hole = (labels > 0) & (areas <= max_area)
|
|
|
|
mask = torch.where(is_hole, 0.1, mask)
|
|
except Exception as e:
|
|
|
|
warnings.warn(
|
|
f"{e}\n\nSkipping the post-processing step due to the error above. You can "
|
|
"still use SAM 2 and it's OK to ignore the error above, although some post-processing "
|
|
"functionality may be limited (which doesn't affect the results in most cases; see "
|
|
"https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
|
|
category=UserWarning,
|
|
stacklevel=2,
|
|
)
|
|
mask = input_mask
|
|
|
|
return mask
|
|
|
|
|
|
def concat_points(old_point_inputs, new_points, new_labels):
|
|
"""Add new points and labels to previous point inputs (add at the end)."""
|
|
if old_point_inputs is None:
|
|
points, labels = new_points, new_labels
|
|
else:
|
|
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
|
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
|
|
|
return {"point_coords": points, "point_labels": labels}
|
|
|