""" Donut Copyright (c) 2022-present NAVER Corp. MIT License """ import json import os import random from collections import defaultdict from typing import Any, Dict, List, Tuple, Union import torch import zss from datasets import load_dataset from nltk import edit_distance from torch.utils.data import Dataset from transformers.modeling_utils import PreTrainedModel from zss import Node def save_json(write_path: Union[str, bytes, os.PathLike], save_obj: Any): with open(write_path, "w") as f: json.dump(save_obj, f) def load_json(json_path: Union[str, bytes, os.PathLike]): with open(json_path, "r") as f: return json.load(f) class DonutDataset(Dataset): """ DonutDataset which is saved in huggingface datasets format. (see details in https://huggingface.co/docs/datasets) Each row, consists of image path(png/jpg/jpeg) and gt data (json/jsonl/txt), and it will be converted into input_tensor(vectorized image) and input_ids(tokenized string) Args: dataset_name_or_path: name of dataset (available at huggingface.co/datasets) or the path containing image files and metadata.jsonl ignore_id: ignore_index for torch.nn.CrossEntropyLoss task_start_token: the special token to be fed to the decoder to conduct the target task """ def __init__( self, dataset_name_or_path: str, donut_model: PreTrainedModel, max_length: int, split: str = "train", ignore_id: int = -100, task_start_token: str = "", prompt_end_token: str = None, sort_json_key: bool = True, ): super().__init__() self.donut_model = donut_model self.max_length = max_length self.split = split self.ignore_id = ignore_id self.task_start_token = task_start_token self.prompt_end_token = prompt_end_token if prompt_end_token else task_start_token self.sort_json_key = sort_json_key self.dataset = load_dataset(dataset_name_or_path, split=self.split) self.dataset_length = len(self.dataset) self.gt_token_sequences = [] for sample in self.dataset: ground_truth = json.loads(sample["ground_truth"]) if "gt_parses" in ground_truth: # when multiple ground truths are available, e.g., docvqa assert isinstance(ground_truth["gt_parses"], list) gt_jsons = ground_truth["gt_parses"] else: assert "gt_parse" in ground_truth and isinstance(ground_truth["gt_parse"], dict) gt_jsons = [ground_truth["gt_parse"]] self.gt_token_sequences.append( [ task_start_token + self.donut_model.json2token( gt_json, update_special_tokens_for_json_key=self.split == "train", sort_json_key=self.sort_json_key, ) + self.donut_model.decoder.tokenizer.eos_token for gt_json in gt_jsons # load json from list of json ] ) self.donut_model.decoder.add_special_tokens([self.task_start_token, self.prompt_end_token]) self.prompt_end_token_id = self.donut_model.decoder.tokenizer.convert_tokens_to_ids(self.prompt_end_token) def __len__(self) -> int: return self.dataset_length def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Load image from image_path of given dataset_path and convert into input_tensor and labels. Convert gt data into input_ids (tokenized string) Returns: input_tensor : preprocessed image input_ids : tokenized gt_data labels : masked labels (model doesn't need to predict prompt and pad token) """ sample = self.dataset[idx] # input_tensor input_tensor = self.donut_model.encoder.prepare_input(sample["image"], random_padding=self.split == "train") # input_ids processed_parse = random.choice(self.gt_token_sequences[idx]) # can be more than one, e.g., DocVQA Task 1 input_ids = self.donut_model.decoder.tokenizer( processed_parse, add_special_tokens=False, max_length=self.max_length, padding="max_length", truncation=True, return_tensors="pt", )["input_ids"].squeeze(0) if self.split == "train": labels = input_ids.clone() labels[ labels == self.donut_model.decoder.tokenizer.pad_token_id ] = self.ignore_id # model doesn't need to predict pad token labels[ : torch.nonzero(labels == self.prompt_end_token_id).sum() + 1 ] = self.ignore_id # model doesn't need to predict prompt (for VQA) return input_tensor, input_ids, labels else: prompt_end_index = torch.nonzero( input_ids == self.prompt_end_token_id ).sum() # return prompt end index instead of target output labels return input_tensor, input_ids, prompt_end_index, processed_parse class JSONParseEvaluator: """ Calculate n-TED(Normalized Tree Edit Distance) based accuracy and F1 accuracy score """ @staticmethod def flatten(data: dict): """ Convert Dictionary into Non-nested Dictionary Example: input(dict) { "menu": [ {"name" : ["cake"], "count" : ["2"]}, {"name" : ["juice"], "count" : ["1"]}, ] } output(list) [ ("menu.name", "cake"), ("menu.count", "2"), ("menu.name", "juice"), ("menu.count", "1"), ] """ flatten_data = list() def _flatten(value, key=""): if type(value) is dict: for child_key, child_value in value.items(): _flatten(child_value, f"{key}.{child_key}" if key else child_key) elif type(value) is list: for value_item in value: _flatten(value_item, key) else: flatten_data.append((key, value)) _flatten(data) return flatten_data @staticmethod def update_cost(node1: Node, node2: Node): """ Update cost for tree edit distance. If both are leaf node, calculate string edit distance between two labels (special token '' will be ignored). If one of them is leaf node, cost is length of string in leaf node + 1. If neither are leaf node, cost is 0 if label1 is same with label2 othewise 1 """ label1 = node1.label label2 = node2.label label1_leaf = "" in label1 label2_leaf = "" in label2 if label1_leaf == True and label2_leaf == True: return edit_distance(label1.replace("", ""), label2.replace("", "")) elif label1_leaf == False and label2_leaf == True: return 1 + len(label2.replace("", "")) elif label1_leaf == True and label2_leaf == False: return 1 + len(label1.replace("", "")) else: return int(label1 != label2) @staticmethod def insert_and_remove_cost(node: Node): """ Insert and remove cost for tree edit distance. If leaf node, cost is length of label name. Otherwise, 1 """ label = node.label if "" in label: return len(label.replace("", "")) else: return 1 def normalize_dict(self, data: Union[Dict, List, Any]): """ Sort by value, while iterate over element if data is list """ if not data: return {} if isinstance(data, dict): new_data = dict() for key in sorted(data.keys(), key=lambda k: (len(k), k)): value = self.normalize_dict(data[key]) if value: if not isinstance(value, list): value = [value] new_data[key] = value elif isinstance(data, list): if all(isinstance(item, dict) for item in data): new_data = [] for item in data: item = self.normalize_dict(item) if item: new_data.append(item) else: new_data = [str(item).strip() for item in data if type(item) in {str, int, float} and str(item).strip()] else: new_data = [str(data).strip()] return new_data def cal_f1(self, preds: List[dict], answers: List[dict]): """ Calculate global F1 accuracy score (field-level, micro-averaged) by counting all true positives, false negatives and false positives """ total_tp, total_fn_or_fp = 0, 0 for pred, answer in zip(preds, answers): pred, answer = self.flatten(self.normalize_dict(pred)), self.flatten(self.normalize_dict(answer)) for field in pred: if field in answer: total_tp += 1 answer.remove(field) else: total_fn_or_fp += 1 total_fn_or_fp += len(answer) return total_tp / (total_tp + total_fn_or_fp / 2) def construct_tree_from_dict(self, data: Union[Dict, List], node_name: str = None): """ Convert Dictionary into Tree Example: input(dict) { "menu": [ {"name" : ["cake"], "count" : ["2"]}, {"name" : ["juice"], "count" : ["1"]}, ] } output(tree) | menu / \ / | | \ name count name count / | | \ cake 2 juice 1 """ if node_name is None: node_name = "" node = Node(node_name) if isinstance(data, dict): for key, value in data.items(): kid_node = self.construct_tree_from_dict(value, key) node.addkid(kid_node) elif isinstance(data, list): if all(isinstance(item, dict) for item in data): for item in data: kid_node = self.construct_tree_from_dict( item, "", ) node.addkid(kid_node) else: for item in data: node.addkid(Node(f"{item}")) else: raise Exception(data, node_name) return node def cal_acc(self, pred: dict, answer: dict): """ Calculate normalized tree edit distance(nTED) based accuracy. 1) Construct tree from dict, 2) Get tree distance with insert/remove/update cost, 3) Divide distance with GT tree size (i.e., nTED), 4) Calculate nTED based accuracy. (= max(1 - nTED, 0 ). """ pred = self.construct_tree_from_dict(self.normalize_dict(pred)) answer = self.construct_tree_from_dict(self.normalize_dict(answer)) return max( 0, 1 - ( zss.distance( pred, answer, get_children=zss.Node.get_children, insert_cost=self.insert_and_remove_cost, remove_cost=self.insert_and_remove_cost, update_cost=self.update_cost, return_operations=False, ) / zss.distance( self.construct_tree_from_dict(self.normalize_dict({})), answer, get_children=zss.Node.get_children, insert_cost=self.insert_and_remove_cost, remove_cost=self.insert_and_remove_cost, update_cost=self.update_cost, return_operations=False, ) ), )