import gradio as gr import argparse import torch from PIL import Image from donut import DonutModel def demo_process(input_img): global model, task_prompt, task_name input_img = Image.fromarray(input_img) output = model.inference(image=input_img, prompt=task_prompt)["predictions"][0] return output parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="Booking") parser.add_argument("--pretrained_path", type=str, default="uartimcs/donut-booking-extract") args, left_argv = parser.parse_known_args() task_name = args.task task_prompt = f"" image = Image.open("./sample-booking/CMA_150.jpg") image.save("CMA_sample.jpg") image = Image.open("./sample-booking/COSCO_150.jpg") image.save("COSCO_sample.jpg") image = Image.open("./sample-booking/ONEY_150.jpg") image.save("ONEY_sample.jpg") model = DonutModel.from_pretrained("uartimcs/donut-booking-extract") model.eval() demo = gr.Interface(fn=demo_process,inputs="image",outputs="json", title=f"Donut 🍩 demonstration for `{task_name}` task", examples=[["CMA_sample.jpg"], ["COSCO_sample.jpg"], ["ONEY_sample.jpg"]],) demo.launch()