Spaces:
Runtime error
Runtime error
Add application file
Browse files- README.md +0 -13
- app.py +76 -0
- assets/demo.png +0 -0
- drag_gan.py +243 -0
- requirements.txt +4 -0
- stylegan2/_init__.py +0 -0
- stylegan2/model.py +699 -0
- stylegan2/op/__init__.py +2 -0
- stylegan2/op/conv2d_gradfix.py +227 -0
- stylegan2/op/fused_act.py +127 -0
- stylegan2/op/fused_bias_act.cpp +32 -0
- stylegan2/op/fused_bias_act_kernel.cu +105 -0
- stylegan2/op/upfirdn2d.cpp +31 -0
- stylegan2/op/upfirdn2d.py +209 -0
- stylegan2/op/upfirdn2d_kernel.cu +369 -0
README.md
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: DragGAN Unofficial
|
3 |
-
emoji: 💻
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 3.29.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from drag_gan import stylegan2, drag_gan
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
device = 'cuda'
|
7 |
+
g_ema = stylegan2().to(device)
|
8 |
+
|
9 |
+
|
10 |
+
def to_image(tensor):
|
11 |
+
tensor = tensor.squeeze(0).permute(1, 2, 0)
|
12 |
+
arr = tensor.detach().cpu().numpy()
|
13 |
+
arr = (arr - arr.min()) / (arr.max() - arr.min())
|
14 |
+
arr = arr * 255
|
15 |
+
return arr.astype('uint8')
|
16 |
+
|
17 |
+
|
18 |
+
def on_click(image, target_point, points, evt: gr.SelectData):
|
19 |
+
x = evt.index[1]
|
20 |
+
y = evt.index[0]
|
21 |
+
if target_point:
|
22 |
+
image[x:x + 5, y:y + 5, :] = 255
|
23 |
+
points['target'].append([evt.index[1], evt.index[0]])
|
24 |
+
return image, str(evt.index)
|
25 |
+
points['handle'].append([evt.index[1], evt.index[0]])
|
26 |
+
image[x:x + 5, y:y + 5, :] = 0
|
27 |
+
return image, str(evt.index)
|
28 |
+
|
29 |
+
|
30 |
+
def on_drag(points, max_iters, state):
|
31 |
+
max_iters = int(max_iters)
|
32 |
+
latent = state['latent']
|
33 |
+
noise = state['noise']
|
34 |
+
F = state['F']
|
35 |
+
|
36 |
+
handle_points = [torch.tensor(p).float() for p in points['handle']]
|
37 |
+
target_points = [torch.tensor(p).float() for p in points['target']]
|
38 |
+
mask = torch.zeros((1, 1, 1024, 1024)).to(device)
|
39 |
+
mask[..., 720:820, 390:600] = 1
|
40 |
+
for sample2, latent, F in drag_gan(g_ema, latent, noise, F,
|
41 |
+
handle_points, target_points, mask,
|
42 |
+
max_iters=max_iters):
|
43 |
+
points = {'target': [], 'handle': []}
|
44 |
+
image = to_image(sample2)
|
45 |
+
|
46 |
+
state['F'] = F
|
47 |
+
state['latent'] = latent
|
48 |
+
yield points, image, state
|
49 |
+
|
50 |
+
|
51 |
+
def main():
|
52 |
+
torch.cuda.manual_seed(25)
|
53 |
+
sample_z = torch.randn([1, 512], device=device)
|
54 |
+
latent, noise = g_ema.prepare([sample_z])
|
55 |
+
sample, F = g_ema.generate(latent, noise)
|
56 |
+
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
state = gr.State({
|
59 |
+
'latent': latent,
|
60 |
+
'noise': noise,
|
61 |
+
'F': F,
|
62 |
+
})
|
63 |
+
max_iters = gr.Slider(1, 100, 5, label='Max Iterations')
|
64 |
+
image = gr.Image(to_image(sample)).style(height=512, width=512)
|
65 |
+
text = gr.Textbox()
|
66 |
+
btn = gr.Button('Drag it')
|
67 |
+
points = gr.State({'target': [], 'handle': []})
|
68 |
+
target_point = gr.Checkbox(label='Target Point')
|
69 |
+
image.select(on_click, [image, target_point, points], [image, text])
|
70 |
+
btn.click(on_drag, inputs=[points, max_iters, state], outputs=[points, image, state])
|
71 |
+
|
72 |
+
demo.queue(concurrency_count=5, max_size=20).launch()
|
73 |
+
|
74 |
+
|
75 |
+
if __name__ == '__main__':
|
76 |
+
main()
|
assets/demo.png
ADDED
drag_gan.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import urllib.request
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as FF
|
9 |
+
import torch.optim
|
10 |
+
from torchvision import utils
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from stylegan2.model import Generator
|
14 |
+
|
15 |
+
|
16 |
+
class DownloadProgressBar(tqdm):
|
17 |
+
def update_to(self, b=1, bsize=1, tsize=None):
|
18 |
+
if tsize is not None:
|
19 |
+
self.total = tsize
|
20 |
+
self.update(b * bsize - self.n)
|
21 |
+
|
22 |
+
|
23 |
+
def get_path(base_path):
|
24 |
+
BASE_DIR = os.path.join('checkpoints')
|
25 |
+
|
26 |
+
save_path = os.path.join(BASE_DIR, base_path)
|
27 |
+
if not os.path.exists(save_path):
|
28 |
+
url = f"https://huggingface.co/aaronb/StyleGAN2/resolve/main/{base_path}"
|
29 |
+
print(f'{base_path} not found')
|
30 |
+
print('Try to download from huggingface: ', url)
|
31 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
32 |
+
download_url(url, save_path)
|
33 |
+
print('Downloaded to ', save_path)
|
34 |
+
return save_path
|
35 |
+
|
36 |
+
|
37 |
+
def download_url(url, output_path):
|
38 |
+
with DownloadProgressBar(unit='B', unit_scale=True,
|
39 |
+
miniters=1, desc=url.split('/')[-1]) as t:
|
40 |
+
urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to)
|
41 |
+
|
42 |
+
|
43 |
+
class CustomGenerator(Generator):
|
44 |
+
def prepare(
|
45 |
+
self,
|
46 |
+
styles,
|
47 |
+
inject_index=None,
|
48 |
+
truncation=1,
|
49 |
+
truncation_latent=None,
|
50 |
+
input_is_latent=False,
|
51 |
+
noise=None,
|
52 |
+
randomize_noise=True,
|
53 |
+
):
|
54 |
+
if not input_is_latent:
|
55 |
+
styles = [self.style(s) for s in styles]
|
56 |
+
|
57 |
+
if noise is None:
|
58 |
+
if randomize_noise:
|
59 |
+
noise = [None] * self.num_layers
|
60 |
+
else:
|
61 |
+
noise = [
|
62 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
63 |
+
]
|
64 |
+
|
65 |
+
if truncation < 1:
|
66 |
+
style_t = []
|
67 |
+
|
68 |
+
for style in styles:
|
69 |
+
style_t.append(
|
70 |
+
truncation_latent + truncation * (style - truncation_latent)
|
71 |
+
)
|
72 |
+
|
73 |
+
styles = style_t
|
74 |
+
|
75 |
+
if len(styles) < 2:
|
76 |
+
inject_index = self.n_latent
|
77 |
+
|
78 |
+
if styles[0].ndim < 3:
|
79 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
80 |
+
|
81 |
+
else:
|
82 |
+
latent = styles[0]
|
83 |
+
|
84 |
+
else:
|
85 |
+
if inject_index is None:
|
86 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
87 |
+
|
88 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
89 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
90 |
+
|
91 |
+
latent = torch.cat([latent, latent2], 1)
|
92 |
+
|
93 |
+
return latent, noise
|
94 |
+
|
95 |
+
def generate(
|
96 |
+
self,
|
97 |
+
latent,
|
98 |
+
noise,
|
99 |
+
):
|
100 |
+
out = self.input(latent)
|
101 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
102 |
+
|
103 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
104 |
+
i = 1
|
105 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
106 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
107 |
+
):
|
108 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
109 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
110 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
111 |
+
if out.shape[-1] == 256: F = out
|
112 |
+
i += 2
|
113 |
+
|
114 |
+
image = skip
|
115 |
+
F = FF.interpolate(F, image.shape[-2:], mode='bilinear')
|
116 |
+
return image, F
|
117 |
+
|
118 |
+
|
119 |
+
def stylegan2(
|
120 |
+
size=1024,
|
121 |
+
channel_multiplier=2,
|
122 |
+
latent=512,
|
123 |
+
n_mlp=8,
|
124 |
+
ckpt='stylegan2-ffhq-config-f.pt'
|
125 |
+
):
|
126 |
+
g_ema = CustomGenerator(size, latent, n_mlp, channel_multiplier=channel_multiplier)
|
127 |
+
checkpoint = torch.load(get_path(ckpt))
|
128 |
+
g_ema.load_state_dict(checkpoint["g_ema"], strict=False)
|
129 |
+
g_ema.requires_grad_(False)
|
130 |
+
g_ema.eval()
|
131 |
+
return g_ema
|
132 |
+
|
133 |
+
|
134 |
+
def bilinear_interpolate_torch(im, y, x):
|
135 |
+
"""
|
136 |
+
im : B,C,H,W
|
137 |
+
y : 1,numPoints -- pixel location y float
|
138 |
+
x : 1,numPOints -- pixel location y float
|
139 |
+
"""
|
140 |
+
|
141 |
+
x0 = torch.floor(x).long()
|
142 |
+
x1 = x0 + 1
|
143 |
+
|
144 |
+
y0 = torch.floor(y).long()
|
145 |
+
y1 = y0 + 1
|
146 |
+
|
147 |
+
wa = (x1.float() - x) * (y1.float() - y)
|
148 |
+
wb = (x1.float() - x) * (y - y0.float())
|
149 |
+
wc = (x - x0.float()) * (y1.float() - y)
|
150 |
+
wd = (x - x0.float()) * (y - y0.float())
|
151 |
+
# Instead of clamp
|
152 |
+
x1 = x1 - torch.floor(x1 / im.shape[3]).int()
|
153 |
+
y1 = y1 - torch.floor(y1 / im.shape[2]).int()
|
154 |
+
Ia = im[:, :, y0, x0]
|
155 |
+
Ib = im[:, :, y1, x0]
|
156 |
+
Ic = im[:, :, y0, x1]
|
157 |
+
Id = im[:, :, y1, x1]
|
158 |
+
|
159 |
+
return Ia * wa + Ib * wb + Ic * wc + Id * wd
|
160 |
+
|
161 |
+
|
162 |
+
def drag_gan(g_ema, latent: torch.Tensor, noise, F, handle_points, target_points, mask, max_iters=1000):
|
163 |
+
handle_points0 = copy.deepcopy(handle_points)
|
164 |
+
n = len(handle_points)
|
165 |
+
r1, r2, lam, d = 3, 12, 20, 1
|
166 |
+
|
167 |
+
def neighbor(x, y, d):
|
168 |
+
points = []
|
169 |
+
for i in range(x - d, x + d):
|
170 |
+
for j in range(y - d, y + d):
|
171 |
+
points.append(torch.tensor([i, j]).float().cuda())
|
172 |
+
return points
|
173 |
+
|
174 |
+
F0 = F.detach().clone()
|
175 |
+
# latent = latent.detach().clone().requires_grad_(True)
|
176 |
+
latent_trainable = latent[:, :6, :].detach().clone().requires_grad_(True)
|
177 |
+
latent_untrainable = latent[:, 6:, :].detach().clone().requires_grad_(False)
|
178 |
+
optimizer = torch.optim.Adam([latent_trainable], lr=2e-3)
|
179 |
+
for iter in range(max_iters):
|
180 |
+
for s in range(1):
|
181 |
+
optimizer.zero_grad()
|
182 |
+
latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
|
183 |
+
sample2, F2 = g_ema.generate(latent, noise)
|
184 |
+
|
185 |
+
# motion supervision
|
186 |
+
loss = 0
|
187 |
+
for i in range(n):
|
188 |
+
pi, ti = handle_points[i], target_points[i]
|
189 |
+
di = (ti - pi) / torch.sum((ti - pi)**2)
|
190 |
+
|
191 |
+
for qi in neighbor(int(pi[0]), int(pi[1]), r1):
|
192 |
+
# f1 = F[..., int(qi[0]), int(qi[1])]
|
193 |
+
# f2 = F2[..., int(qi[0] + di[0]), int(qi[1] + di[1])]
|
194 |
+
f1 = bilinear_interpolate_torch(F2, qi[0], qi[1]).detach()
|
195 |
+
f2 = bilinear_interpolate_torch(F2, qi[0] + di[0], qi[1] + di[1])
|
196 |
+
loss += FF.l1_loss(f2, f1)
|
197 |
+
|
198 |
+
# loss += ((F-F0) * (1-mask)).abs().mean() * lam
|
199 |
+
|
200 |
+
loss.backward()
|
201 |
+
optimizer.step()
|
202 |
+
|
203 |
+
print(latent_trainable[0, 0, :10])
|
204 |
+
# if s % 10 ==0:
|
205 |
+
# utils.save_image(sample2, "test2.png", normalize=True, range=(-1, 1))
|
206 |
+
|
207 |
+
# point tracking
|
208 |
+
with torch.no_grad():
|
209 |
+
sample2, F2 = g_ema.generate(latent, noise)
|
210 |
+
for i in range(n):
|
211 |
+
pi = handle_points0[i]
|
212 |
+
# f = F0[..., int(pi[0]), int(pi[1])]
|
213 |
+
f0 = bilinear_interpolate_torch(F0, pi[0], pi[1])
|
214 |
+
minv = 1e9
|
215 |
+
minx = 1e9
|
216 |
+
miny = 1e9
|
217 |
+
for qi in neighbor(int(handle_points[i][0]), int(handle_points[i][1]), r2):
|
218 |
+
# f2 = F2[..., int(qi[0]), int(qi[1])]
|
219 |
+
try:
|
220 |
+
f2 = bilinear_interpolate_torch(F2, qi[0], qi[1])
|
221 |
+
except:
|
222 |
+
import ipdb
|
223 |
+
ipdb.set_trace()
|
224 |
+
v = torch.norm(f2 - f0, p=1)
|
225 |
+
if v < minv:
|
226 |
+
minv = v
|
227 |
+
minx = int(qi[0])
|
228 |
+
miny = int(qi[1])
|
229 |
+
handle_points[i][0] = minx
|
230 |
+
handle_points[i][1] = miny
|
231 |
+
|
232 |
+
F = F2.detach().clone()
|
233 |
+
if iter % 1 == 0:
|
234 |
+
print(iter, loss.item(), handle_points, target_points)
|
235 |
+
# p = handle_points[0].int()
|
236 |
+
# sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] = sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] * 0
|
237 |
+
# t = target_points[0].int()
|
238 |
+
# sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] = sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] * 255
|
239 |
+
|
240 |
+
# sample2[0, :, 210, 134] = sample2[0, :, 210, 134] * 0
|
241 |
+
utils.save_image(sample2, "test2.png", normalize=True, range=(-1, 1))
|
242 |
+
|
243 |
+
yield sample2, latent, F2
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio
|
4 |
+
tqdm
|
stylegan2/_init__.py
ADDED
File without changes
|
stylegan2/model.py
ADDED
@@ -0,0 +1,699 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import functools
|
4 |
+
import operator
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torch.autograd import Function
|
10 |
+
|
11 |
+
from .op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d, conv2d_gradfix
|
12 |
+
|
13 |
+
|
14 |
+
class PixelNorm(nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
def forward(self, input):
|
19 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
20 |
+
|
21 |
+
|
22 |
+
def make_kernel(k):
|
23 |
+
k = torch.tensor(k, dtype=torch.float32)
|
24 |
+
|
25 |
+
if k.ndim == 1:
|
26 |
+
k = k[None, :] * k[:, None]
|
27 |
+
|
28 |
+
k /= k.sum()
|
29 |
+
|
30 |
+
return k
|
31 |
+
|
32 |
+
|
33 |
+
class Upsample(nn.Module):
|
34 |
+
def __init__(self, kernel, factor=2):
|
35 |
+
super().__init__()
|
36 |
+
|
37 |
+
self.factor = factor
|
38 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
39 |
+
self.register_buffer("kernel", kernel)
|
40 |
+
|
41 |
+
p = kernel.shape[0] - factor
|
42 |
+
|
43 |
+
pad0 = (p + 1) // 2 + factor - 1
|
44 |
+
pad1 = p // 2
|
45 |
+
|
46 |
+
self.pad = (pad0, pad1)
|
47 |
+
|
48 |
+
def forward(self, input):
|
49 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
50 |
+
|
51 |
+
return out
|
52 |
+
|
53 |
+
|
54 |
+
class Downsample(nn.Module):
|
55 |
+
def __init__(self, kernel, factor=2):
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
self.factor = factor
|
59 |
+
kernel = make_kernel(kernel)
|
60 |
+
self.register_buffer("kernel", kernel)
|
61 |
+
|
62 |
+
p = kernel.shape[0] - factor
|
63 |
+
|
64 |
+
pad0 = (p + 1) // 2
|
65 |
+
pad1 = p // 2
|
66 |
+
|
67 |
+
self.pad = (pad0, pad1)
|
68 |
+
|
69 |
+
def forward(self, input):
|
70 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
71 |
+
|
72 |
+
return out
|
73 |
+
|
74 |
+
|
75 |
+
class Blur(nn.Module):
|
76 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
77 |
+
super().__init__()
|
78 |
+
|
79 |
+
kernel = make_kernel(kernel)
|
80 |
+
|
81 |
+
if upsample_factor > 1:
|
82 |
+
kernel = kernel * (upsample_factor ** 2)
|
83 |
+
|
84 |
+
self.register_buffer("kernel", kernel)
|
85 |
+
|
86 |
+
self.pad = pad
|
87 |
+
|
88 |
+
def forward(self, input):
|
89 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
90 |
+
|
91 |
+
return out
|
92 |
+
|
93 |
+
|
94 |
+
class EqualConv2d(nn.Module):
|
95 |
+
def __init__(
|
96 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
self.weight = nn.Parameter(
|
101 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
102 |
+
)
|
103 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
104 |
+
|
105 |
+
self.stride = stride
|
106 |
+
self.padding = padding
|
107 |
+
|
108 |
+
if bias:
|
109 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
110 |
+
|
111 |
+
else:
|
112 |
+
self.bias = None
|
113 |
+
|
114 |
+
def forward(self, input):
|
115 |
+
out = conv2d_gradfix.conv2d(
|
116 |
+
input,
|
117 |
+
self.weight * self.scale,
|
118 |
+
bias=self.bias,
|
119 |
+
stride=self.stride,
|
120 |
+
padding=self.padding,
|
121 |
+
)
|
122 |
+
|
123 |
+
return out
|
124 |
+
|
125 |
+
def __repr__(self):
|
126 |
+
return (
|
127 |
+
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
|
128 |
+
f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
class EqualLinear(nn.Module):
|
133 |
+
def __init__(
|
134 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
135 |
+
):
|
136 |
+
super().__init__()
|
137 |
+
|
138 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
139 |
+
|
140 |
+
if bias:
|
141 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
142 |
+
|
143 |
+
else:
|
144 |
+
self.bias = None
|
145 |
+
|
146 |
+
self.activation = activation
|
147 |
+
|
148 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
149 |
+
self.lr_mul = lr_mul
|
150 |
+
|
151 |
+
def forward(self, input):
|
152 |
+
if self.activation:
|
153 |
+
out = F.linear(input, self.weight * self.scale)
|
154 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
155 |
+
|
156 |
+
else:
|
157 |
+
out = F.linear(
|
158 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
159 |
+
)
|
160 |
+
|
161 |
+
return out
|
162 |
+
|
163 |
+
def __repr__(self):
|
164 |
+
return (
|
165 |
+
f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
+
class ModulatedConv2d(nn.Module):
|
170 |
+
def __init__(
|
171 |
+
self,
|
172 |
+
in_channel,
|
173 |
+
out_channel,
|
174 |
+
kernel_size,
|
175 |
+
style_dim,
|
176 |
+
demodulate=True,
|
177 |
+
upsample=False,
|
178 |
+
downsample=False,
|
179 |
+
blur_kernel=[1, 3, 3, 1],
|
180 |
+
fused=True,
|
181 |
+
):
|
182 |
+
super().__init__()
|
183 |
+
|
184 |
+
self.eps = 1e-8
|
185 |
+
self.kernel_size = kernel_size
|
186 |
+
self.in_channel = in_channel
|
187 |
+
self.out_channel = out_channel
|
188 |
+
self.upsample = upsample
|
189 |
+
self.downsample = downsample
|
190 |
+
|
191 |
+
if upsample:
|
192 |
+
factor = 2
|
193 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
194 |
+
pad0 = (p + 1) // 2 + factor - 1
|
195 |
+
pad1 = p // 2 + 1
|
196 |
+
|
197 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
198 |
+
|
199 |
+
if downsample:
|
200 |
+
factor = 2
|
201 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
202 |
+
pad0 = (p + 1) // 2
|
203 |
+
pad1 = p // 2
|
204 |
+
|
205 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
206 |
+
|
207 |
+
fan_in = in_channel * kernel_size ** 2
|
208 |
+
self.scale = 1 / math.sqrt(fan_in)
|
209 |
+
self.padding = kernel_size // 2
|
210 |
+
|
211 |
+
self.weight = nn.Parameter(
|
212 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
213 |
+
)
|
214 |
+
|
215 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
216 |
+
|
217 |
+
self.demodulate = demodulate
|
218 |
+
self.fused = fused
|
219 |
+
|
220 |
+
def __repr__(self):
|
221 |
+
return (
|
222 |
+
f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
|
223 |
+
f"upsample={self.upsample}, downsample={self.downsample})"
|
224 |
+
)
|
225 |
+
|
226 |
+
def forward(self, input, style):
|
227 |
+
batch, in_channel, height, width = input.shape
|
228 |
+
|
229 |
+
if not self.fused:
|
230 |
+
weight = self.scale * self.weight.squeeze(0)
|
231 |
+
style = self.modulation(style)
|
232 |
+
|
233 |
+
if self.demodulate:
|
234 |
+
w = weight.unsqueeze(0) * style.view(batch, 1, in_channel, 1, 1)
|
235 |
+
dcoefs = (w.square().sum((2, 3, 4)) + 1e-8).rsqrt()
|
236 |
+
|
237 |
+
input = input * style.reshape(batch, in_channel, 1, 1)
|
238 |
+
|
239 |
+
if self.upsample:
|
240 |
+
weight = weight.transpose(0, 1)
|
241 |
+
out = conv2d_gradfix.conv_transpose2d(
|
242 |
+
input, weight, padding=0, stride=2
|
243 |
+
)
|
244 |
+
out = self.blur(out)
|
245 |
+
|
246 |
+
elif self.downsample:
|
247 |
+
input = self.blur(input)
|
248 |
+
out = conv2d_gradfix.conv2d(input, weight, padding=0, stride=2)
|
249 |
+
|
250 |
+
else:
|
251 |
+
out = conv2d_gradfix.conv2d(input, weight, padding=self.padding)
|
252 |
+
|
253 |
+
if self.demodulate:
|
254 |
+
out = out * dcoefs.view(batch, -1, 1, 1)
|
255 |
+
|
256 |
+
return out
|
257 |
+
|
258 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
259 |
+
weight = self.scale * self.weight * style
|
260 |
+
|
261 |
+
if self.demodulate:
|
262 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
263 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
264 |
+
|
265 |
+
weight = weight.view(
|
266 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
267 |
+
)
|
268 |
+
|
269 |
+
if self.upsample:
|
270 |
+
input = input.view(1, batch * in_channel, height, width)
|
271 |
+
weight = weight.view(
|
272 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
273 |
+
)
|
274 |
+
weight = weight.transpose(1, 2).reshape(
|
275 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
276 |
+
)
|
277 |
+
out = conv2d_gradfix.conv_transpose2d(
|
278 |
+
input, weight, padding=0, stride=2, groups=batch
|
279 |
+
)
|
280 |
+
_, _, height, width = out.shape
|
281 |
+
out = out.view(batch, self.out_channel, height, width)
|
282 |
+
out = self.blur(out)
|
283 |
+
|
284 |
+
elif self.downsample:
|
285 |
+
input = self.blur(input)
|
286 |
+
_, _, height, width = input.shape
|
287 |
+
input = input.view(1, batch * in_channel, height, width)
|
288 |
+
out = conv2d_gradfix.conv2d(
|
289 |
+
input, weight, padding=0, stride=2, groups=batch
|
290 |
+
)
|
291 |
+
_, _, height, width = out.shape
|
292 |
+
out = out.view(batch, self.out_channel, height, width)
|
293 |
+
|
294 |
+
else:
|
295 |
+
input = input.view(1, batch * in_channel, height, width)
|
296 |
+
out = conv2d_gradfix.conv2d(
|
297 |
+
input, weight, padding=self.padding, groups=batch
|
298 |
+
)
|
299 |
+
_, _, height, width = out.shape
|
300 |
+
out = out.view(batch, self.out_channel, height, width)
|
301 |
+
|
302 |
+
return out
|
303 |
+
|
304 |
+
|
305 |
+
class NoiseInjection(nn.Module):
|
306 |
+
def __init__(self):
|
307 |
+
super().__init__()
|
308 |
+
|
309 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
310 |
+
|
311 |
+
def forward(self, image, noise=None):
|
312 |
+
if noise is None:
|
313 |
+
batch, _, height, width = image.shape
|
314 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
315 |
+
|
316 |
+
return image + self.weight * noise
|
317 |
+
|
318 |
+
|
319 |
+
class ConstantInput(nn.Module):
|
320 |
+
def __init__(self, channel, size=4):
|
321 |
+
super().__init__()
|
322 |
+
|
323 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
324 |
+
|
325 |
+
def forward(self, input):
|
326 |
+
batch = input.shape[0]
|
327 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
328 |
+
|
329 |
+
return out
|
330 |
+
|
331 |
+
|
332 |
+
class StyledConv(nn.Module):
|
333 |
+
def __init__(
|
334 |
+
self,
|
335 |
+
in_channel,
|
336 |
+
out_channel,
|
337 |
+
kernel_size,
|
338 |
+
style_dim,
|
339 |
+
upsample=False,
|
340 |
+
blur_kernel=[1, 3, 3, 1],
|
341 |
+
demodulate=True,
|
342 |
+
):
|
343 |
+
super().__init__()
|
344 |
+
|
345 |
+
self.conv = ModulatedConv2d(
|
346 |
+
in_channel,
|
347 |
+
out_channel,
|
348 |
+
kernel_size,
|
349 |
+
style_dim,
|
350 |
+
upsample=upsample,
|
351 |
+
blur_kernel=blur_kernel,
|
352 |
+
demodulate=demodulate,
|
353 |
+
)
|
354 |
+
|
355 |
+
self.noise = NoiseInjection()
|
356 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
357 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
358 |
+
self.activate = FusedLeakyReLU(out_channel)
|
359 |
+
|
360 |
+
def forward(self, input, style, noise=None):
|
361 |
+
out = self.conv(input, style)
|
362 |
+
out = self.noise(out, noise=noise)
|
363 |
+
# out = out + self.bias
|
364 |
+
out = self.activate(out)
|
365 |
+
|
366 |
+
return out
|
367 |
+
|
368 |
+
|
369 |
+
class ToRGB(nn.Module):
|
370 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
371 |
+
super().__init__()
|
372 |
+
|
373 |
+
if upsample:
|
374 |
+
self.upsample = Upsample(blur_kernel)
|
375 |
+
|
376 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
377 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
378 |
+
|
379 |
+
def forward(self, input, style, skip=None):
|
380 |
+
out = self.conv(input, style)
|
381 |
+
out = out + self.bias
|
382 |
+
|
383 |
+
if skip is not None:
|
384 |
+
skip = self.upsample(skip)
|
385 |
+
|
386 |
+
out = out + skip
|
387 |
+
|
388 |
+
return out
|
389 |
+
|
390 |
+
|
391 |
+
class Generator(nn.Module):
|
392 |
+
def __init__(
|
393 |
+
self,
|
394 |
+
size,
|
395 |
+
style_dim,
|
396 |
+
n_mlp,
|
397 |
+
channel_multiplier=2,
|
398 |
+
blur_kernel=[1, 3, 3, 1],
|
399 |
+
lr_mlp=0.01,
|
400 |
+
):
|
401 |
+
super().__init__()
|
402 |
+
|
403 |
+
self.size = size
|
404 |
+
|
405 |
+
self.style_dim = style_dim
|
406 |
+
|
407 |
+
layers = [PixelNorm()]
|
408 |
+
|
409 |
+
for i in range(n_mlp):
|
410 |
+
layers.append(
|
411 |
+
EqualLinear(
|
412 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
|
413 |
+
)
|
414 |
+
)
|
415 |
+
|
416 |
+
self.style = nn.Sequential(*layers)
|
417 |
+
|
418 |
+
self.channels = {
|
419 |
+
4: 512,
|
420 |
+
8: 512,
|
421 |
+
16: 512,
|
422 |
+
32: 512,
|
423 |
+
64: 256 * channel_multiplier,
|
424 |
+
128: 128 * channel_multiplier,
|
425 |
+
256: 64 * channel_multiplier,
|
426 |
+
512: 32 * channel_multiplier,
|
427 |
+
1024: 16 * channel_multiplier,
|
428 |
+
}
|
429 |
+
|
430 |
+
self.input = ConstantInput(self.channels[4])
|
431 |
+
self.conv1 = StyledConv(
|
432 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
433 |
+
)
|
434 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
435 |
+
|
436 |
+
self.log_size = int(math.log(size, 2))
|
437 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
438 |
+
|
439 |
+
self.convs = nn.ModuleList()
|
440 |
+
self.upsamples = nn.ModuleList()
|
441 |
+
self.to_rgbs = nn.ModuleList()
|
442 |
+
self.noises = nn.Module()
|
443 |
+
|
444 |
+
in_channel = self.channels[4]
|
445 |
+
|
446 |
+
for layer_idx in range(self.num_layers):
|
447 |
+
res = (layer_idx + 5) // 2
|
448 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
449 |
+
self.noises.register_buffer(f"noise_{layer_idx}", torch.randn(*shape))
|
450 |
+
|
451 |
+
for i in range(3, self.log_size + 1):
|
452 |
+
out_channel = self.channels[2 ** i]
|
453 |
+
|
454 |
+
self.convs.append(
|
455 |
+
StyledConv(
|
456 |
+
in_channel,
|
457 |
+
out_channel,
|
458 |
+
3,
|
459 |
+
style_dim,
|
460 |
+
upsample=True,
|
461 |
+
blur_kernel=blur_kernel,
|
462 |
+
)
|
463 |
+
)
|
464 |
+
|
465 |
+
self.convs.append(
|
466 |
+
StyledConv(
|
467 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
468 |
+
)
|
469 |
+
)
|
470 |
+
|
471 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
472 |
+
|
473 |
+
in_channel = out_channel
|
474 |
+
|
475 |
+
self.n_latent = self.log_size * 2 - 2
|
476 |
+
|
477 |
+
def make_noise(self):
|
478 |
+
device = self.input.input.device
|
479 |
+
|
480 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
481 |
+
|
482 |
+
for i in range(3, self.log_size + 1):
|
483 |
+
for _ in range(2):
|
484 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
485 |
+
|
486 |
+
return noises
|
487 |
+
|
488 |
+
def mean_latent(self, n_latent):
|
489 |
+
latent_in = torch.randn(
|
490 |
+
n_latent, self.style_dim, device=self.input.input.device
|
491 |
+
)
|
492 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
493 |
+
|
494 |
+
return latent
|
495 |
+
|
496 |
+
def get_latent(self, input):
|
497 |
+
return self.style(input)
|
498 |
+
|
499 |
+
def forward(
|
500 |
+
self,
|
501 |
+
styles,
|
502 |
+
return_latents=False,
|
503 |
+
inject_index=None,
|
504 |
+
truncation=1,
|
505 |
+
truncation_latent=None,
|
506 |
+
input_is_latent=False,
|
507 |
+
noise=None,
|
508 |
+
randomize_noise=True,
|
509 |
+
):
|
510 |
+
if not input_is_latent:
|
511 |
+
styles = [self.style(s) for s in styles]
|
512 |
+
|
513 |
+
if noise is None:
|
514 |
+
if randomize_noise:
|
515 |
+
noise = [None] * self.num_layers
|
516 |
+
else:
|
517 |
+
noise = [
|
518 |
+
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
|
519 |
+
]
|
520 |
+
|
521 |
+
if truncation < 1:
|
522 |
+
style_t = []
|
523 |
+
|
524 |
+
for style in styles:
|
525 |
+
style_t.append(
|
526 |
+
truncation_latent + truncation * (style - truncation_latent)
|
527 |
+
)
|
528 |
+
|
529 |
+
styles = style_t
|
530 |
+
|
531 |
+
if len(styles) < 2:
|
532 |
+
inject_index = self.n_latent
|
533 |
+
|
534 |
+
if styles[0].ndim < 3:
|
535 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
536 |
+
|
537 |
+
else:
|
538 |
+
latent = styles[0]
|
539 |
+
|
540 |
+
else:
|
541 |
+
if inject_index is None:
|
542 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
543 |
+
|
544 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
545 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
546 |
+
|
547 |
+
latent = torch.cat([latent, latent2], 1)
|
548 |
+
|
549 |
+
out = self.input(latent)
|
550 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
551 |
+
|
552 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
553 |
+
|
554 |
+
i = 1
|
555 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
556 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
557 |
+
):
|
558 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
559 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
560 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
561 |
+
|
562 |
+
i += 2
|
563 |
+
|
564 |
+
|
565 |
+
image = skip
|
566 |
+
|
567 |
+
if return_latents:
|
568 |
+
return image, latent
|
569 |
+
|
570 |
+
else:
|
571 |
+
return image, None
|
572 |
+
|
573 |
+
|
574 |
+
class ConvLayer(nn.Sequential):
|
575 |
+
def __init__(
|
576 |
+
self,
|
577 |
+
in_channel,
|
578 |
+
out_channel,
|
579 |
+
kernel_size,
|
580 |
+
downsample=False,
|
581 |
+
blur_kernel=[1, 3, 3, 1],
|
582 |
+
bias=True,
|
583 |
+
activate=True,
|
584 |
+
):
|
585 |
+
layers = []
|
586 |
+
|
587 |
+
if downsample:
|
588 |
+
factor = 2
|
589 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
590 |
+
pad0 = (p + 1) // 2
|
591 |
+
pad1 = p // 2
|
592 |
+
|
593 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
594 |
+
|
595 |
+
stride = 2
|
596 |
+
self.padding = 0
|
597 |
+
|
598 |
+
else:
|
599 |
+
stride = 1
|
600 |
+
self.padding = kernel_size // 2
|
601 |
+
|
602 |
+
layers.append(
|
603 |
+
EqualConv2d(
|
604 |
+
in_channel,
|
605 |
+
out_channel,
|
606 |
+
kernel_size,
|
607 |
+
padding=self.padding,
|
608 |
+
stride=stride,
|
609 |
+
bias=bias and not activate,
|
610 |
+
)
|
611 |
+
)
|
612 |
+
|
613 |
+
if activate:
|
614 |
+
layers.append(FusedLeakyReLU(out_channel, bias=bias))
|
615 |
+
|
616 |
+
super().__init__(*layers)
|
617 |
+
|
618 |
+
|
619 |
+
class ResBlock(nn.Module):
|
620 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
621 |
+
super().__init__()
|
622 |
+
|
623 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
624 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
625 |
+
|
626 |
+
self.skip = ConvLayer(
|
627 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
628 |
+
)
|
629 |
+
|
630 |
+
def forward(self, input):
|
631 |
+
out = self.conv1(input)
|
632 |
+
out = self.conv2(out)
|
633 |
+
|
634 |
+
skip = self.skip(input)
|
635 |
+
out = (out + skip) / math.sqrt(2)
|
636 |
+
|
637 |
+
return out
|
638 |
+
|
639 |
+
|
640 |
+
class Discriminator(nn.Module):
|
641 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
642 |
+
super().__init__()
|
643 |
+
|
644 |
+
channels = {
|
645 |
+
4: 512,
|
646 |
+
8: 512,
|
647 |
+
16: 512,
|
648 |
+
32: 512,
|
649 |
+
64: 256 * channel_multiplier,
|
650 |
+
128: 128 * channel_multiplier,
|
651 |
+
256: 64 * channel_multiplier,
|
652 |
+
512: 32 * channel_multiplier,
|
653 |
+
1024: 16 * channel_multiplier,
|
654 |
+
}
|
655 |
+
|
656 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
657 |
+
|
658 |
+
log_size = int(math.log(size, 2))
|
659 |
+
|
660 |
+
in_channel = channels[size]
|
661 |
+
|
662 |
+
for i in range(log_size, 2, -1):
|
663 |
+
out_channel = channels[2 ** (i - 1)]
|
664 |
+
|
665 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
666 |
+
|
667 |
+
in_channel = out_channel
|
668 |
+
|
669 |
+
self.convs = nn.Sequential(*convs)
|
670 |
+
|
671 |
+
self.stddev_group = 4
|
672 |
+
self.stddev_feat = 1
|
673 |
+
|
674 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
675 |
+
self.final_linear = nn.Sequential(
|
676 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
|
677 |
+
EqualLinear(channels[4], 1),
|
678 |
+
)
|
679 |
+
|
680 |
+
def forward(self, input):
|
681 |
+
out = self.convs(input)
|
682 |
+
|
683 |
+
batch, channel, height, width = out.shape
|
684 |
+
group = min(batch, self.stddev_group)
|
685 |
+
stddev = out.view(
|
686 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
687 |
+
)
|
688 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
689 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
690 |
+
stddev = stddev.repeat(group, 1, height, width)
|
691 |
+
out = torch.cat([out, stddev], 1)
|
692 |
+
|
693 |
+
out = self.final_conv(out)
|
694 |
+
|
695 |
+
out = out.view(batch, -1)
|
696 |
+
out = self.final_linear(out)
|
697 |
+
|
698 |
+
return out
|
699 |
+
|
stylegan2/op/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
+
from .upfirdn2d import upfirdn2d
|
stylegan2/op/conv2d_gradfix.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import autograd
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
enabled = True
|
9 |
+
weight_gradients_disabled = False
|
10 |
+
|
11 |
+
|
12 |
+
@contextlib.contextmanager
|
13 |
+
def no_weight_gradients():
|
14 |
+
global weight_gradients_disabled
|
15 |
+
|
16 |
+
old = weight_gradients_disabled
|
17 |
+
weight_gradients_disabled = True
|
18 |
+
yield
|
19 |
+
weight_gradients_disabled = old
|
20 |
+
|
21 |
+
|
22 |
+
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
|
23 |
+
if could_use_op(input):
|
24 |
+
return conv2d_gradfix(
|
25 |
+
transpose=False,
|
26 |
+
weight_shape=weight.shape,
|
27 |
+
stride=stride,
|
28 |
+
padding=padding,
|
29 |
+
output_padding=0,
|
30 |
+
dilation=dilation,
|
31 |
+
groups=groups,
|
32 |
+
).apply(input, weight, bias)
|
33 |
+
|
34 |
+
return F.conv2d(
|
35 |
+
input=input,
|
36 |
+
weight=weight,
|
37 |
+
bias=bias,
|
38 |
+
stride=stride,
|
39 |
+
padding=padding,
|
40 |
+
dilation=dilation,
|
41 |
+
groups=groups,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def conv_transpose2d(
|
46 |
+
input,
|
47 |
+
weight,
|
48 |
+
bias=None,
|
49 |
+
stride=1,
|
50 |
+
padding=0,
|
51 |
+
output_padding=0,
|
52 |
+
groups=1,
|
53 |
+
dilation=1,
|
54 |
+
):
|
55 |
+
if could_use_op(input):
|
56 |
+
return conv2d_gradfix(
|
57 |
+
transpose=True,
|
58 |
+
weight_shape=weight.shape,
|
59 |
+
stride=stride,
|
60 |
+
padding=padding,
|
61 |
+
output_padding=output_padding,
|
62 |
+
groups=groups,
|
63 |
+
dilation=dilation,
|
64 |
+
).apply(input, weight, bias)
|
65 |
+
|
66 |
+
return F.conv_transpose2d(
|
67 |
+
input=input,
|
68 |
+
weight=weight,
|
69 |
+
bias=bias,
|
70 |
+
stride=stride,
|
71 |
+
padding=padding,
|
72 |
+
output_padding=output_padding,
|
73 |
+
dilation=dilation,
|
74 |
+
groups=groups,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
def could_use_op(input):
|
79 |
+
if (not enabled) or (not torch.backends.cudnn.enabled):
|
80 |
+
return False
|
81 |
+
|
82 |
+
if input.device.type != "cuda":
|
83 |
+
return False
|
84 |
+
|
85 |
+
if any(torch.__version__.startswith(x) for x in ["1.7.", "1.8."]):
|
86 |
+
return True
|
87 |
+
|
88 |
+
warnings.warn(
|
89 |
+
f"conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d()."
|
90 |
+
)
|
91 |
+
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def ensure_tuple(xs, ndim):
|
96 |
+
xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
|
97 |
+
|
98 |
+
return xs
|
99 |
+
|
100 |
+
|
101 |
+
conv2d_gradfix_cache = dict()
|
102 |
+
|
103 |
+
|
104 |
+
def conv2d_gradfix(
|
105 |
+
transpose, weight_shape, stride, padding, output_padding, dilation, groups
|
106 |
+
):
|
107 |
+
ndim = 2
|
108 |
+
weight_shape = tuple(weight_shape)
|
109 |
+
stride = ensure_tuple(stride, ndim)
|
110 |
+
padding = ensure_tuple(padding, ndim)
|
111 |
+
output_padding = ensure_tuple(output_padding, ndim)
|
112 |
+
dilation = ensure_tuple(dilation, ndim)
|
113 |
+
|
114 |
+
key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
|
115 |
+
if key in conv2d_gradfix_cache:
|
116 |
+
return conv2d_gradfix_cache[key]
|
117 |
+
|
118 |
+
common_kwargs = dict(
|
119 |
+
stride=stride, padding=padding, dilation=dilation, groups=groups
|
120 |
+
)
|
121 |
+
|
122 |
+
def calc_output_padding(input_shape, output_shape):
|
123 |
+
if transpose:
|
124 |
+
return [0, 0]
|
125 |
+
|
126 |
+
return [
|
127 |
+
input_shape[i + 2]
|
128 |
+
- (output_shape[i + 2] - 1) * stride[i]
|
129 |
+
- (1 - 2 * padding[i])
|
130 |
+
- dilation[i] * (weight_shape[i + 2] - 1)
|
131 |
+
for i in range(ndim)
|
132 |
+
]
|
133 |
+
|
134 |
+
class Conv2d(autograd.Function):
|
135 |
+
@staticmethod
|
136 |
+
def forward(ctx, input, weight, bias):
|
137 |
+
if not transpose:
|
138 |
+
out = F.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
|
139 |
+
|
140 |
+
else:
|
141 |
+
out = F.conv_transpose2d(
|
142 |
+
input=input,
|
143 |
+
weight=weight,
|
144 |
+
bias=bias,
|
145 |
+
output_padding=output_padding,
|
146 |
+
**common_kwargs,
|
147 |
+
)
|
148 |
+
|
149 |
+
ctx.save_for_backward(input, weight)
|
150 |
+
|
151 |
+
return out
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def backward(ctx, grad_output):
|
155 |
+
input, weight = ctx.saved_tensors
|
156 |
+
grad_input, grad_weight, grad_bias = None, None, None
|
157 |
+
|
158 |
+
if ctx.needs_input_grad[0]:
|
159 |
+
p = calc_output_padding(
|
160 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
161 |
+
)
|
162 |
+
grad_input = conv2d_gradfix(
|
163 |
+
transpose=(not transpose),
|
164 |
+
weight_shape=weight_shape,
|
165 |
+
output_padding=p,
|
166 |
+
**common_kwargs,
|
167 |
+
).apply(grad_output, weight, None)
|
168 |
+
|
169 |
+
if ctx.needs_input_grad[1] and not weight_gradients_disabled:
|
170 |
+
grad_weight = Conv2dGradWeight.apply(grad_output, input)
|
171 |
+
|
172 |
+
if ctx.needs_input_grad[2]:
|
173 |
+
grad_bias = grad_output.sum((0, 2, 3))
|
174 |
+
|
175 |
+
return grad_input, grad_weight, grad_bias
|
176 |
+
|
177 |
+
class Conv2dGradWeight(autograd.Function):
|
178 |
+
@staticmethod
|
179 |
+
def forward(ctx, grad_output, input):
|
180 |
+
op = torch._C._jit_get_operation(
|
181 |
+
"aten::cudnn_convolution_backward_weight"
|
182 |
+
if not transpose
|
183 |
+
else "aten::cudnn_convolution_transpose_backward_weight"
|
184 |
+
)
|
185 |
+
flags = [
|
186 |
+
torch.backends.cudnn.benchmark,
|
187 |
+
torch.backends.cudnn.deterministic,
|
188 |
+
torch.backends.cudnn.allow_tf32,
|
189 |
+
]
|
190 |
+
grad_weight = op(
|
191 |
+
weight_shape,
|
192 |
+
grad_output,
|
193 |
+
input,
|
194 |
+
padding,
|
195 |
+
stride,
|
196 |
+
dilation,
|
197 |
+
groups,
|
198 |
+
*flags,
|
199 |
+
)
|
200 |
+
ctx.save_for_backward(grad_output, input)
|
201 |
+
|
202 |
+
return grad_weight
|
203 |
+
|
204 |
+
@staticmethod
|
205 |
+
def backward(ctx, grad_grad_weight):
|
206 |
+
grad_output, input = ctx.saved_tensors
|
207 |
+
grad_grad_output, grad_grad_input = None, None
|
208 |
+
|
209 |
+
if ctx.needs_input_grad[0]:
|
210 |
+
grad_grad_output = Conv2d.apply(input, grad_grad_weight, None)
|
211 |
+
|
212 |
+
if ctx.needs_input_grad[1]:
|
213 |
+
p = calc_output_padding(
|
214 |
+
input_shape=input.shape, output_shape=grad_output.shape
|
215 |
+
)
|
216 |
+
grad_grad_input = conv2d_gradfix(
|
217 |
+
transpose=(not transpose),
|
218 |
+
weight_shape=weight_shape,
|
219 |
+
output_padding=p,
|
220 |
+
**common_kwargs,
|
221 |
+
).apply(grad_output, grad_grad_weight, None)
|
222 |
+
|
223 |
+
return grad_grad_output, grad_grad_input
|
224 |
+
|
225 |
+
conv2d_gradfix_cache[key] = Conv2d
|
226 |
+
|
227 |
+
return Conv2d
|
stylegan2/op/fused_act.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.autograd import Function
|
7 |
+
from torch.utils.cpp_extension import load
|
8 |
+
|
9 |
+
|
10 |
+
module_path = os.path.dirname(__file__)
|
11 |
+
fused = load(
|
12 |
+
"fused",
|
13 |
+
sources=[
|
14 |
+
os.path.join(module_path, "fused_bias_act.cpp"),
|
15 |
+
os.path.join(module_path, "fused_bias_act_kernel.cu"),
|
16 |
+
],
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, grad_output, out, bias, negative_slope, scale):
|
23 |
+
ctx.save_for_backward(out)
|
24 |
+
ctx.negative_slope = negative_slope
|
25 |
+
ctx.scale = scale
|
26 |
+
|
27 |
+
empty = grad_output.new_empty(0)
|
28 |
+
|
29 |
+
grad_input = fused.fused_bias_act(
|
30 |
+
grad_output.contiguous(), empty, out, 3, 1, negative_slope, scale
|
31 |
+
)
|
32 |
+
|
33 |
+
dim = [0]
|
34 |
+
|
35 |
+
if grad_input.ndim > 2:
|
36 |
+
dim += list(range(2, grad_input.ndim))
|
37 |
+
|
38 |
+
if bias:
|
39 |
+
grad_bias = grad_input.sum(dim).detach()
|
40 |
+
|
41 |
+
else:
|
42 |
+
grad_bias = empty
|
43 |
+
|
44 |
+
return grad_input, grad_bias
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
48 |
+
out, = ctx.saved_tensors
|
49 |
+
gradgrad_out = fused.fused_bias_act(
|
50 |
+
gradgrad_input.contiguous(),
|
51 |
+
gradgrad_bias,
|
52 |
+
out,
|
53 |
+
3,
|
54 |
+
1,
|
55 |
+
ctx.negative_slope,
|
56 |
+
ctx.scale,
|
57 |
+
)
|
58 |
+
|
59 |
+
return gradgrad_out, None, None, None, None
|
60 |
+
|
61 |
+
|
62 |
+
class FusedLeakyReLUFunction(Function):
|
63 |
+
@staticmethod
|
64 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
65 |
+
empty = input.new_empty(0)
|
66 |
+
|
67 |
+
ctx.bias = bias is not None
|
68 |
+
|
69 |
+
if bias is None:
|
70 |
+
bias = empty
|
71 |
+
|
72 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
73 |
+
ctx.save_for_backward(out)
|
74 |
+
ctx.negative_slope = negative_slope
|
75 |
+
ctx.scale = scale
|
76 |
+
|
77 |
+
return out
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def backward(ctx, grad_output):
|
81 |
+
out, = ctx.saved_tensors
|
82 |
+
|
83 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
84 |
+
grad_output, out, ctx.bias, ctx.negative_slope, ctx.scale
|
85 |
+
)
|
86 |
+
|
87 |
+
if not ctx.bias:
|
88 |
+
grad_bias = None
|
89 |
+
|
90 |
+
return grad_input, grad_bias, None, None
|
91 |
+
|
92 |
+
|
93 |
+
class FusedLeakyReLU(nn.Module):
|
94 |
+
def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5):
|
95 |
+
super().__init__()
|
96 |
+
|
97 |
+
if bias:
|
98 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
99 |
+
|
100 |
+
else:
|
101 |
+
self.bias = None
|
102 |
+
|
103 |
+
self.negative_slope = negative_slope
|
104 |
+
self.scale = scale
|
105 |
+
|
106 |
+
def forward(self, input):
|
107 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
108 |
+
|
109 |
+
|
110 |
+
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
|
111 |
+
if input.device.type == "cpu":
|
112 |
+
if bias is not None:
|
113 |
+
rest_dim = [1] * (input.ndim - bias.ndim - 1)
|
114 |
+
return (
|
115 |
+
F.leaky_relu(
|
116 |
+
input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
|
117 |
+
)
|
118 |
+
* scale
|
119 |
+
)
|
120 |
+
|
121 |
+
else:
|
122 |
+
return F.leaky_relu(input, negative_slope=0.2) * scale
|
123 |
+
|
124 |
+
else:
|
125 |
+
return FusedLeakyReLUFunction.apply(
|
126 |
+
input.contiguous(), bias, negative_slope, scale
|
127 |
+
)
|
stylegan2/op/fused_bias_act.cpp
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#include <ATen/ATen.h>
|
3 |
+
#include <torch/extension.h>
|
4 |
+
|
5 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor &input,
|
6 |
+
const torch::Tensor &bias,
|
7 |
+
const torch::Tensor &refer, int act, int grad,
|
8 |
+
float alpha, float scale);
|
9 |
+
|
10 |
+
#define CHECK_CUDA(x) \
|
11 |
+
TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
12 |
+
#define CHECK_CONTIGUOUS(x) \
|
13 |
+
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
14 |
+
#define CHECK_INPUT(x) \
|
15 |
+
CHECK_CUDA(x); \
|
16 |
+
CHECK_CONTIGUOUS(x)
|
17 |
+
|
18 |
+
torch::Tensor fused_bias_act(const torch::Tensor &input,
|
19 |
+
const torch::Tensor &bias,
|
20 |
+
const torch::Tensor &refer, int act, int grad,
|
21 |
+
float alpha, float scale) {
|
22 |
+
CHECK_INPUT(input);
|
23 |
+
CHECK_INPUT(bias);
|
24 |
+
|
25 |
+
at::DeviceGuard guard(input.device());
|
26 |
+
|
27 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
28 |
+
}
|
29 |
+
|
30 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
31 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
32 |
+
}
|
stylegan2/op/fused_bias_act_kernel.cu
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
12 |
+
#include <ATen/cuda/CUDAContext.h>
|
13 |
+
|
14 |
+
|
15 |
+
#include <cuda.h>
|
16 |
+
#include <cuda_runtime.h>
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
static __global__ void
|
20 |
+
fused_bias_act_kernel(scalar_t *out, const scalar_t *p_x, const scalar_t *p_b,
|
21 |
+
const scalar_t *p_ref, int act, int grad, scalar_t alpha,
|
22 |
+
scalar_t scale, int loop_x, int size_x, int step_b,
|
23 |
+
int size_b, int use_bias, int use_ref) {
|
24 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
25 |
+
|
26 |
+
scalar_t zero = 0.0;
|
27 |
+
|
28 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x;
|
29 |
+
loop_idx++, xi += blockDim.x) {
|
30 |
+
scalar_t x = p_x[xi];
|
31 |
+
|
32 |
+
if (use_bias) {
|
33 |
+
x += p_b[(xi / step_b) % size_b];
|
34 |
+
}
|
35 |
+
|
36 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
37 |
+
|
38 |
+
scalar_t y;
|
39 |
+
|
40 |
+
switch (act * 10 + grad) {
|
41 |
+
default:
|
42 |
+
case 10:
|
43 |
+
y = x;
|
44 |
+
break;
|
45 |
+
case 11:
|
46 |
+
y = x;
|
47 |
+
break;
|
48 |
+
case 12:
|
49 |
+
y = 0.0;
|
50 |
+
break;
|
51 |
+
|
52 |
+
case 30:
|
53 |
+
y = (x > 0.0) ? x : x * alpha;
|
54 |
+
break;
|
55 |
+
case 31:
|
56 |
+
y = (ref > 0.0) ? x : x * alpha;
|
57 |
+
break;
|
58 |
+
case 32:
|
59 |
+
y = 0.0;
|
60 |
+
break;
|
61 |
+
}
|
62 |
+
|
63 |
+
out[xi] = y * scale;
|
64 |
+
}
|
65 |
+
}
|
66 |
+
|
67 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor &input,
|
68 |
+
const torch::Tensor &bias,
|
69 |
+
const torch::Tensor &refer, int act, int grad,
|
70 |
+
float alpha, float scale) {
|
71 |
+
int curDevice = -1;
|
72 |
+
cudaGetDevice(&curDevice);
|
73 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
74 |
+
|
75 |
+
auto x = input.contiguous();
|
76 |
+
auto b = bias.contiguous();
|
77 |
+
auto ref = refer.contiguous();
|
78 |
+
|
79 |
+
int use_bias = b.numel() ? 1 : 0;
|
80 |
+
int use_ref = ref.numel() ? 1 : 0;
|
81 |
+
|
82 |
+
int size_x = x.numel();
|
83 |
+
int size_b = b.numel();
|
84 |
+
int step_b = 1;
|
85 |
+
|
86 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
87 |
+
step_b *= x.size(i);
|
88 |
+
}
|
89 |
+
|
90 |
+
int loop_x = 4;
|
91 |
+
int block_size = 4 * 32;
|
92 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
93 |
+
|
94 |
+
auto y = torch::empty_like(x);
|
95 |
+
|
96 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
97 |
+
x.scalar_type(), "fused_bias_act_kernel", [&] {
|
98 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
99 |
+
y.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
100 |
+
b.data_ptr<scalar_t>(), ref.data_ptr<scalar_t>(), act, grad, alpha,
|
101 |
+
scale, loop_x, size_x, step_b, size_b, use_bias, use_ref);
|
102 |
+
});
|
103 |
+
|
104 |
+
return y;
|
105 |
+
}
|
stylegan2/op/upfirdn2d.cpp
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/ATen.h>
|
2 |
+
#include <torch/extension.h>
|
3 |
+
|
4 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor &input,
|
5 |
+
const torch::Tensor &kernel, int up_x, int up_y,
|
6 |
+
int down_x, int down_y, int pad_x0, int pad_x1,
|
7 |
+
int pad_y0, int pad_y1);
|
8 |
+
|
9 |
+
#define CHECK_CUDA(x) \
|
10 |
+
TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
11 |
+
#define CHECK_CONTIGUOUS(x) \
|
12 |
+
TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
13 |
+
#define CHECK_INPUT(x) \
|
14 |
+
CHECK_CUDA(x); \
|
15 |
+
CHECK_CONTIGUOUS(x)
|
16 |
+
|
17 |
+
torch::Tensor upfirdn2d(const torch::Tensor &input, const torch::Tensor &kernel,
|
18 |
+
int up_x, int up_y, int down_x, int down_y, int pad_x0,
|
19 |
+
int pad_x1, int pad_y0, int pad_y1) {
|
20 |
+
CHECK_INPUT(input);
|
21 |
+
CHECK_INPUT(kernel);
|
22 |
+
|
23 |
+
at::DeviceGuard guard(input.device());
|
24 |
+
|
25 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1,
|
26 |
+
pad_y0, pad_y1);
|
27 |
+
}
|
28 |
+
|
29 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
30 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
31 |
+
}
|
stylegan2/op/upfirdn2d.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import abc
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.autograd import Function
|
7 |
+
from torch.utils.cpp_extension import load
|
8 |
+
|
9 |
+
|
10 |
+
module_path = os.path.dirname(__file__)
|
11 |
+
upfirdn2d_op = load(
|
12 |
+
"upfirdn2d",
|
13 |
+
sources=[
|
14 |
+
os.path.join(module_path, "upfirdn2d.cpp"),
|
15 |
+
os.path.join(module_path, "upfirdn2d_kernel.cu"),
|
16 |
+
],
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class UpFirDn2dBackward(Function):
|
21 |
+
@staticmethod
|
22 |
+
def forward(
|
23 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
24 |
+
):
|
25 |
+
|
26 |
+
up_x, up_y = up
|
27 |
+
down_x, down_y = down
|
28 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
29 |
+
|
30 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
31 |
+
|
32 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
33 |
+
grad_output,
|
34 |
+
grad_kernel,
|
35 |
+
down_x,
|
36 |
+
down_y,
|
37 |
+
up_x,
|
38 |
+
up_y,
|
39 |
+
g_pad_x0,
|
40 |
+
g_pad_x1,
|
41 |
+
g_pad_y0,
|
42 |
+
g_pad_y1,
|
43 |
+
)
|
44 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
45 |
+
|
46 |
+
ctx.save_for_backward(kernel)
|
47 |
+
|
48 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
49 |
+
|
50 |
+
ctx.up_x = up_x
|
51 |
+
ctx.up_y = up_y
|
52 |
+
ctx.down_x = down_x
|
53 |
+
ctx.down_y = down_y
|
54 |
+
ctx.pad_x0 = pad_x0
|
55 |
+
ctx.pad_x1 = pad_x1
|
56 |
+
ctx.pad_y0 = pad_y0
|
57 |
+
ctx.pad_y1 = pad_y1
|
58 |
+
ctx.in_size = in_size
|
59 |
+
ctx.out_size = out_size
|
60 |
+
|
61 |
+
return grad_input
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def backward(ctx, gradgrad_input):
|
65 |
+
kernel, = ctx.saved_tensors
|
66 |
+
|
67 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
68 |
+
|
69 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
70 |
+
gradgrad_input,
|
71 |
+
kernel,
|
72 |
+
ctx.up_x,
|
73 |
+
ctx.up_y,
|
74 |
+
ctx.down_x,
|
75 |
+
ctx.down_y,
|
76 |
+
ctx.pad_x0,
|
77 |
+
ctx.pad_x1,
|
78 |
+
ctx.pad_y0,
|
79 |
+
ctx.pad_y1,
|
80 |
+
)
|
81 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
82 |
+
gradgrad_out = gradgrad_out.view(
|
83 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
84 |
+
)
|
85 |
+
|
86 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
87 |
+
|
88 |
+
|
89 |
+
class UpFirDn2d(Function):
|
90 |
+
@staticmethod
|
91 |
+
def forward(ctx, input, kernel, up, down, pad):
|
92 |
+
up_x, up_y = up
|
93 |
+
down_x, down_y = down
|
94 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
95 |
+
|
96 |
+
kernel_h, kernel_w = kernel.shape
|
97 |
+
batch, channel, in_h, in_w = input.shape
|
98 |
+
ctx.in_size = input.shape
|
99 |
+
|
100 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
101 |
+
|
102 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
103 |
+
|
104 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
105 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
106 |
+
ctx.out_size = (out_h, out_w)
|
107 |
+
|
108 |
+
ctx.up = (up_x, up_y)
|
109 |
+
ctx.down = (down_x, down_y)
|
110 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
111 |
+
|
112 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
113 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
114 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
115 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
116 |
+
|
117 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
118 |
+
|
119 |
+
out = upfirdn2d_op.upfirdn2d(
|
120 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
121 |
+
)
|
122 |
+
# out = out.view(major, out_h, out_w, minor)
|
123 |
+
out = out.view(-1, channel, out_h, out_w)
|
124 |
+
|
125 |
+
return out
|
126 |
+
|
127 |
+
@staticmethod
|
128 |
+
def backward(ctx, grad_output):
|
129 |
+
kernel, grad_kernel = ctx.saved_tensors
|
130 |
+
|
131 |
+
grad_input = None
|
132 |
+
|
133 |
+
if ctx.needs_input_grad[0]:
|
134 |
+
grad_input = UpFirDn2dBackward.apply(
|
135 |
+
grad_output,
|
136 |
+
kernel,
|
137 |
+
grad_kernel,
|
138 |
+
ctx.up,
|
139 |
+
ctx.down,
|
140 |
+
ctx.pad,
|
141 |
+
ctx.g_pad,
|
142 |
+
ctx.in_size,
|
143 |
+
ctx.out_size,
|
144 |
+
)
|
145 |
+
|
146 |
+
return grad_input, None, None, None, None
|
147 |
+
|
148 |
+
|
149 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
150 |
+
if not isinstance(up, abc.Iterable):
|
151 |
+
up = (up, up)
|
152 |
+
|
153 |
+
if not isinstance(down, abc.Iterable):
|
154 |
+
down = (down, down)
|
155 |
+
|
156 |
+
if len(pad) == 2:
|
157 |
+
pad = (pad[0], pad[1], pad[0], pad[1])
|
158 |
+
|
159 |
+
if input.device.type == "cpu":
|
160 |
+
out = upfirdn2d_native(input, kernel, *up, *down, *pad)
|
161 |
+
|
162 |
+
else:
|
163 |
+
out = UpFirDn2d.apply(input, kernel, up, down, pad)
|
164 |
+
|
165 |
+
return out
|
166 |
+
|
167 |
+
|
168 |
+
def upfirdn2d_native(
|
169 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
170 |
+
):
|
171 |
+
_, channel, in_h, in_w = input.shape
|
172 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
173 |
+
|
174 |
+
_, in_h, in_w, minor = input.shape
|
175 |
+
kernel_h, kernel_w = kernel.shape
|
176 |
+
|
177 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
178 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
179 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
180 |
+
|
181 |
+
out = F.pad(
|
182 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
183 |
+
)
|
184 |
+
out = out[
|
185 |
+
:,
|
186 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
187 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
188 |
+
:,
|
189 |
+
]
|
190 |
+
|
191 |
+
out = out.permute(0, 3, 1, 2)
|
192 |
+
out = out.reshape(
|
193 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
194 |
+
)
|
195 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
196 |
+
out = F.conv2d(out, w)
|
197 |
+
out = out.reshape(
|
198 |
+
-1,
|
199 |
+
minor,
|
200 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
201 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
202 |
+
)
|
203 |
+
out = out.permute(0, 2, 3, 1)
|
204 |
+
out = out[:, ::down_y, ::down_x, :]
|
205 |
+
|
206 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
|
207 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
|
208 |
+
|
209 |
+
return out.view(-1, channel, out_h, out_w)
|
stylegan2/op/upfirdn2d_kernel.cu
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
12 |
+
#include <ATen/cuda/CUDAContext.h>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
18 |
+
int c = a / b;
|
19 |
+
|
20 |
+
if (c * b > a) {
|
21 |
+
c--;
|
22 |
+
}
|
23 |
+
|
24 |
+
return c;
|
25 |
+
}
|
26 |
+
|
27 |
+
struct UpFirDn2DKernelParams {
|
28 |
+
int up_x;
|
29 |
+
int up_y;
|
30 |
+
int down_x;
|
31 |
+
int down_y;
|
32 |
+
int pad_x0;
|
33 |
+
int pad_x1;
|
34 |
+
int pad_y0;
|
35 |
+
int pad_y1;
|
36 |
+
|
37 |
+
int major_dim;
|
38 |
+
int in_h;
|
39 |
+
int in_w;
|
40 |
+
int minor_dim;
|
41 |
+
int kernel_h;
|
42 |
+
int kernel_w;
|
43 |
+
int out_h;
|
44 |
+
int out_w;
|
45 |
+
int loop_major;
|
46 |
+
int loop_x;
|
47 |
+
};
|
48 |
+
|
49 |
+
template <typename scalar_t>
|
50 |
+
__global__ void upfirdn2d_kernel_large(scalar_t *out, const scalar_t *input,
|
51 |
+
const scalar_t *kernel,
|
52 |
+
const UpFirDn2DKernelParams p) {
|
53 |
+
int minor_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
54 |
+
int out_y = minor_idx / p.minor_dim;
|
55 |
+
minor_idx -= out_y * p.minor_dim;
|
56 |
+
int out_x_base = blockIdx.y * p.loop_x * blockDim.y + threadIdx.y;
|
57 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
58 |
+
|
59 |
+
if (out_x_base >= p.out_w || out_y >= p.out_h ||
|
60 |
+
major_idx_base >= p.major_dim) {
|
61 |
+
return;
|
62 |
+
}
|
63 |
+
|
64 |
+
int mid_y = out_y * p.down_y + p.up_y - 1 - p.pad_y0;
|
65 |
+
int in_y = min(max(floor_div(mid_y, p.up_y), 0), p.in_h);
|
66 |
+
int h = min(max(floor_div(mid_y + p.kernel_h, p.up_y), 0), p.in_h) - in_y;
|
67 |
+
int kernel_y = mid_y + p.kernel_h - (in_y + 1) * p.up_y;
|
68 |
+
|
69 |
+
for (int loop_major = 0, major_idx = major_idx_base;
|
70 |
+
loop_major < p.loop_major && major_idx < p.major_dim;
|
71 |
+
loop_major++, major_idx++) {
|
72 |
+
for (int loop_x = 0, out_x = out_x_base;
|
73 |
+
loop_x < p.loop_x && out_x < p.out_w; loop_x++, out_x += blockDim.y) {
|
74 |
+
int mid_x = out_x * p.down_x + p.up_x - 1 - p.pad_x0;
|
75 |
+
int in_x = min(max(floor_div(mid_x, p.up_x), 0), p.in_w);
|
76 |
+
int w = min(max(floor_div(mid_x + p.kernel_w, p.up_x), 0), p.in_w) - in_x;
|
77 |
+
int kernel_x = mid_x + p.kernel_w - (in_x + 1) * p.up_x;
|
78 |
+
|
79 |
+
const scalar_t *x_p =
|
80 |
+
&input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim +
|
81 |
+
minor_idx];
|
82 |
+
const scalar_t *k_p = &kernel[kernel_y * p.kernel_w + kernel_x];
|
83 |
+
int x_px = p.minor_dim;
|
84 |
+
int k_px = -p.up_x;
|
85 |
+
int x_py = p.in_w * p.minor_dim;
|
86 |
+
int k_py = -p.up_y * p.kernel_w;
|
87 |
+
|
88 |
+
scalar_t v = 0.0f;
|
89 |
+
|
90 |
+
for (int y = 0; y < h; y++) {
|
91 |
+
for (int x = 0; x < w; x++) {
|
92 |
+
v += static_cast<scalar_t>(*x_p) * static_cast<scalar_t>(*k_p);
|
93 |
+
x_p += x_px;
|
94 |
+
k_p += k_px;
|
95 |
+
}
|
96 |
+
|
97 |
+
x_p += x_py - w * x_px;
|
98 |
+
k_p += k_py - w * k_px;
|
99 |
+
}
|
100 |
+
|
101 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
|
102 |
+
minor_idx] = v;
|
103 |
+
}
|
104 |
+
}
|
105 |
+
}
|
106 |
+
|
107 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y,
|
108 |
+
int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
109 |
+
__global__ void upfirdn2d_kernel(scalar_t *out, const scalar_t *input,
|
110 |
+
const scalar_t *kernel,
|
111 |
+
const UpFirDn2DKernelParams p) {
|
112 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
113 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
114 |
+
|
115 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
116 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
117 |
+
|
118 |
+
int minor_idx = blockIdx.x;
|
119 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
120 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
121 |
+
tile_out_y *= tile_out_h;
|
122 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
123 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
124 |
+
|
125 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h |
|
126 |
+
major_idx_base >= p.major_dim) {
|
127 |
+
return;
|
128 |
+
}
|
129 |
+
|
130 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w;
|
131 |
+
tap_idx += blockDim.x) {
|
132 |
+
int ky = tap_idx / kernel_w;
|
133 |
+
int kx = tap_idx - ky * kernel_w;
|
134 |
+
scalar_t v = 0.0;
|
135 |
+
|
136 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
137 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
138 |
+
}
|
139 |
+
|
140 |
+
sk[ky][kx] = v;
|
141 |
+
}
|
142 |
+
|
143 |
+
for (int loop_major = 0, major_idx = major_idx_base;
|
144 |
+
loop_major < p.loop_major & major_idx < p.major_dim;
|
145 |
+
loop_major++, major_idx++) {
|
146 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base;
|
147 |
+
loop_x < p.loop_x & tile_out_x < p.out_w;
|
148 |
+
loop_x++, tile_out_x += tile_out_w) {
|
149 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
150 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
151 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
152 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
153 |
+
|
154 |
+
__syncthreads();
|
155 |
+
|
156 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w;
|
157 |
+
in_idx += blockDim.x) {
|
158 |
+
int rel_in_y = in_idx / tile_in_w;
|
159 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
160 |
+
int in_x = rel_in_x + tile_in_x;
|
161 |
+
int in_y = rel_in_y + tile_in_y;
|
162 |
+
|
163 |
+
scalar_t v = 0.0;
|
164 |
+
|
165 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
166 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) *
|
167 |
+
p.minor_dim +
|
168 |
+
minor_idx];
|
169 |
+
}
|
170 |
+
|
171 |
+
sx[rel_in_y][rel_in_x] = v;
|
172 |
+
}
|
173 |
+
|
174 |
+
__syncthreads();
|
175 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w;
|
176 |
+
out_idx += blockDim.x) {
|
177 |
+
int rel_out_y = out_idx / tile_out_w;
|
178 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
179 |
+
int out_x = rel_out_x + tile_out_x;
|
180 |
+
int out_y = rel_out_y + tile_out_y;
|
181 |
+
|
182 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
183 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
184 |
+
int in_x = floor_div(mid_x, up_x);
|
185 |
+
int in_y = floor_div(mid_y, up_y);
|
186 |
+
int rel_in_x = in_x - tile_in_x;
|
187 |
+
int rel_in_y = in_y - tile_in_y;
|
188 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
189 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
190 |
+
|
191 |
+
scalar_t v = 0.0;
|
192 |
+
|
193 |
+
#pragma unroll
|
194 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
195 |
+
#pragma unroll
|
196 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
197 |
+
v += sx[rel_in_y + y][rel_in_x + x] *
|
198 |
+
sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
199 |
+
|
200 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
201 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim +
|
202 |
+
minor_idx] = v;
|
203 |
+
}
|
204 |
+
}
|
205 |
+
}
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor &input,
|
210 |
+
const torch::Tensor &kernel, int up_x, int up_y,
|
211 |
+
int down_x, int down_y, int pad_x0, int pad_x1,
|
212 |
+
int pad_y0, int pad_y1) {
|
213 |
+
int curDevice = -1;
|
214 |
+
cudaGetDevice(&curDevice);
|
215 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
216 |
+
|
217 |
+
UpFirDn2DKernelParams p;
|
218 |
+
|
219 |
+
auto x = input.contiguous();
|
220 |
+
auto k = kernel.contiguous();
|
221 |
+
|
222 |
+
p.major_dim = x.size(0);
|
223 |
+
p.in_h = x.size(1);
|
224 |
+
p.in_w = x.size(2);
|
225 |
+
p.minor_dim = x.size(3);
|
226 |
+
p.kernel_h = k.size(0);
|
227 |
+
p.kernel_w = k.size(1);
|
228 |
+
p.up_x = up_x;
|
229 |
+
p.up_y = up_y;
|
230 |
+
p.down_x = down_x;
|
231 |
+
p.down_y = down_y;
|
232 |
+
p.pad_x0 = pad_x0;
|
233 |
+
p.pad_x1 = pad_x1;
|
234 |
+
p.pad_y0 = pad_y0;
|
235 |
+
p.pad_y1 = pad_y1;
|
236 |
+
|
237 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) /
|
238 |
+
p.down_y;
|
239 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) /
|
240 |
+
p.down_x;
|
241 |
+
|
242 |
+
auto out =
|
243 |
+
at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
244 |
+
|
245 |
+
int mode = -1;
|
246 |
+
|
247 |
+
int tile_out_h = -1;
|
248 |
+
int tile_out_w = -1;
|
249 |
+
|
250 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
|
251 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
252 |
+
mode = 1;
|
253 |
+
tile_out_h = 16;
|
254 |
+
tile_out_w = 64;
|
255 |
+
}
|
256 |
+
|
257 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 &&
|
258 |
+
p.kernel_h <= 3 && p.kernel_w <= 3) {
|
259 |
+
mode = 2;
|
260 |
+
tile_out_h = 16;
|
261 |
+
tile_out_w = 64;
|
262 |
+
}
|
263 |
+
|
264 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
|
265 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
266 |
+
mode = 3;
|
267 |
+
tile_out_h = 16;
|
268 |
+
tile_out_w = 64;
|
269 |
+
}
|
270 |
+
|
271 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 &&
|
272 |
+
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
273 |
+
mode = 4;
|
274 |
+
tile_out_h = 16;
|
275 |
+
tile_out_w = 64;
|
276 |
+
}
|
277 |
+
|
278 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
279 |
+
p.kernel_h <= 4 && p.kernel_w <= 4) {
|
280 |
+
mode = 5;
|
281 |
+
tile_out_h = 8;
|
282 |
+
tile_out_w = 32;
|
283 |
+
}
|
284 |
+
|
285 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 &&
|
286 |
+
p.kernel_h <= 2 && p.kernel_w <= 2) {
|
287 |
+
mode = 6;
|
288 |
+
tile_out_h = 8;
|
289 |
+
tile_out_w = 32;
|
290 |
+
}
|
291 |
+
|
292 |
+
dim3 block_size;
|
293 |
+
dim3 grid_size;
|
294 |
+
|
295 |
+
if (tile_out_h > 0 && tile_out_w > 0) {
|
296 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
297 |
+
p.loop_x = 1;
|
298 |
+
block_size = dim3(32 * 8, 1, 1);
|
299 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
300 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
301 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
302 |
+
} else {
|
303 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
304 |
+
p.loop_x = 4;
|
305 |
+
block_size = dim3(4, 32, 1);
|
306 |
+
grid_size = dim3((p.out_h * p.minor_dim - 1) / block_size.x + 1,
|
307 |
+
(p.out_w - 1) / (p.loop_x * block_size.y) + 1,
|
308 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
309 |
+
}
|
310 |
+
|
311 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
312 |
+
switch (mode) {
|
313 |
+
case 1:
|
314 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64>
|
315 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
316 |
+
x.data_ptr<scalar_t>(),
|
317 |
+
k.data_ptr<scalar_t>(), p);
|
318 |
+
|
319 |
+
break;
|
320 |
+
|
321 |
+
case 2:
|
322 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64>
|
323 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
324 |
+
x.data_ptr<scalar_t>(),
|
325 |
+
k.data_ptr<scalar_t>(), p);
|
326 |
+
|
327 |
+
break;
|
328 |
+
|
329 |
+
case 3:
|
330 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64>
|
331 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
332 |
+
x.data_ptr<scalar_t>(),
|
333 |
+
k.data_ptr<scalar_t>(), p);
|
334 |
+
|
335 |
+
break;
|
336 |
+
|
337 |
+
case 4:
|
338 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64>
|
339 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
340 |
+
x.data_ptr<scalar_t>(),
|
341 |
+
k.data_ptr<scalar_t>(), p);
|
342 |
+
|
343 |
+
break;
|
344 |
+
|
345 |
+
case 5:
|
346 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
347 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
348 |
+
x.data_ptr<scalar_t>(),
|
349 |
+
k.data_ptr<scalar_t>(), p);
|
350 |
+
|
351 |
+
break;
|
352 |
+
|
353 |
+
case 6:
|
354 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32>
|
355 |
+
<<<grid_size, block_size, 0, stream>>>(out.data_ptr<scalar_t>(),
|
356 |
+
x.data_ptr<scalar_t>(),
|
357 |
+
k.data_ptr<scalar_t>(), p);
|
358 |
+
|
359 |
+
break;
|
360 |
+
|
361 |
+
default:
|
362 |
+
upfirdn2d_kernel_large<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
363 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(),
|
364 |
+
k.data_ptr<scalar_t>(), p);
|
365 |
+
}
|
366 |
+
});
|
367 |
+
|
368 |
+
return out;
|
369 |
+
}
|