lixiang46 commited on
Commit
20df108
1 Parent(s): e9c3996
Files changed (1) hide show
  1. app.py +13 -14
app.py CHANGED
@@ -21,19 +21,20 @@ text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dt
21
  tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
22
  vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half()
23
  scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
24
- unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half()
25
  unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half()
26
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
27
  ip_img_size = 336
28
  clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
29
 
30
- pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
31
- vae=vae,text_encoder=text_encoder,
32
- tokenizer=tokenizer,
33
- unet=unet_t2i,
34
- scheduler=scheduler,
35
- force_zeros_for_empty_prompt=False
36
- ).to(device)
 
37
 
38
  pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
39
  vae=vae,
@@ -49,7 +50,7 @@ pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLP
49
  if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
50
  pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
51
 
52
- pipe_i2i.load_ip_adapter( f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
53
 
54
  MAX_SEED = np.iinfo(np.int32).max
55
  MAX_IMAGE_SIZE = 2048
@@ -60,7 +61,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
60
  generator = torch.Generator().manual_seed(seed)
61
 
62
  if ip_adapter_image is None:
63
- image = pipe_t2i(
64
  prompt = prompt,
65
  negative_prompt = negative_prompt,
66
  guidance_scale = guidance_scale,
@@ -118,10 +119,9 @@ with gr.Blocks(css=css) as demo:
118
  with gr.Row():
119
  with gr.Column(elem_id="col-left"):
120
  with gr.Row():
121
- prompt = gr.Text(
122
  label="Prompt",
123
  show_label=False,
124
- max_lines=1,
125
  placeholder="Enter your prompt",
126
  container=False,
127
  )
@@ -129,9 +129,8 @@ with gr.Blocks(css=css) as demo:
129
  with gr.Row():
130
  ip_adapter_image = gr.Image(label="IP-Adapter Image (optional)", type="pil")
131
  with gr.Accordion("Advanced Settings", open=False):
132
- negative_prompt = gr.Text(
133
  label="Negative prompt",
134
- max_lines=1,
135
  placeholder="Enter a negative prompt",
136
  visible=True,
137
  )
 
21
  tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
22
  vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half()
23
  scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
24
+ # unet_t2i = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half()
25
  unet_i2i = unet_2d_condition.UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half()
26
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/image_encoder',ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
27
  ip_img_size = 336
28
  clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
29
 
30
+ # pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
31
+ # vae=vae,
32
+ # text_encoder=text_encoder,
33
+ # tokenizer=tokenizer,
34
+ # unet=unet_t2i,
35
+ # scheduler=scheduler,
36
+ # force_zeros_for_empty_prompt=False
37
+ # ).to(device)
38
 
39
  pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
40
  vae=vae,
 
50
  if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
51
  pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
52
 
53
+ pipe_i2i.load_ip_adapter(f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
54
 
55
  MAX_SEED = np.iinfo(np.int32).max
56
  MAX_IMAGE_SIZE = 2048
 
61
  generator = torch.Generator().manual_seed(seed)
62
 
63
  if ip_adapter_image is None:
64
+ image = pipe_i2i(
65
  prompt = prompt,
66
  negative_prompt = negative_prompt,
67
  guidance_scale = guidance_scale,
 
119
  with gr.Row():
120
  with gr.Column(elem_id="col-left"):
121
  with gr.Row():
122
+ prompt = gr.Textbox(
123
  label="Prompt",
124
  show_label=False,
 
125
  placeholder="Enter your prompt",
126
  container=False,
127
  )
 
129
  with gr.Row():
130
  ip_adapter_image = gr.Image(label="IP-Adapter Image (optional)", type="pil")
131
  with gr.Accordion("Advanced Settings", open=False):
132
+ negative_prompt = gr.Textbox(
133
  label="Negative prompt",
 
134
  placeholder="Enter a negative prompt",
135
  visible=True,
136
  )