Spaces:
Runtime error
Runtime error
lixiang46
commited on
Commit
•
d5bcc1a
1
Parent(s):
ae6a57b
update
Browse files- app.py +42 -24
- kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py +841 -0
app.py
CHANGED
@@ -3,7 +3,7 @@ import random
|
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
5 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
6 |
-
from kolors.pipelines
|
7 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
8 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
9 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
@@ -11,7 +11,6 @@ from diffusers import AutoencoderKL, EulerDiscreteScheduler
|
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
|
14 |
-
device = "cuda"
|
15 |
device = "cuda"
|
16 |
ckpt_dir = '/home/lixiang46/Kolors/weights/Kolors'
|
17 |
ckpt_IPA_dir = '/home/lixiang46/Kolors/weights/Kolors-IP-Adapter-Plus'
|
@@ -28,7 +27,15 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_IPA_dir}/i
|
|
28 |
ip_img_size = 336
|
29 |
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
vae=vae,
|
33 |
text_encoder=text_encoder,
|
34 |
tokenizer=tokenizer,
|
@@ -39,36 +46,47 @@ pipe = StableDiffusionXLPipeline(
|
|
39 |
force_zeros_for_empty_prompt=False
|
40 |
).to(device)
|
41 |
|
42 |
-
if hasattr(
|
43 |
-
|
44 |
|
45 |
-
|
46 |
|
47 |
MAX_SEED = np.iinfo(np.int32).max
|
48 |
MAX_IMAGE_SIZE = 2048
|
49 |
|
50 |
-
def infer(prompt,
|
51 |
-
|
52 |
if randomize_seed:
|
53 |
seed = random.randint(0, MAX_SEED)
|
54 |
-
|
55 |
generator = torch.Generator().manual_seed(seed)
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
negative_prompt=negative_prompt,
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
examples = [
|
|
|
72 |
["穿着黑色T恤衫,上面中文绿色大字写着“可图”", "image/test_ip.jpg", 0.5],
|
73 |
["一只可爱的小狗在奔跑", "image/test_ip2.png", 0.5]
|
74 |
]
|
@@ -171,7 +189,7 @@ with gr.Blocks(css=css) as demo:
|
|
171 |
|
172 |
run_button.click(
|
173 |
fn = infer,
|
174 |
-
inputs = [prompt,
|
175 |
outputs = [result]
|
176 |
)
|
177 |
|
|
|
3 |
import torch
|
4 |
from huggingface_hub import snapshot_download
|
5 |
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
6 |
+
from kolors.pipelines import pipeline_stable_diffusion_xl_chatglm_256_ipadapter, pipeline_stable_diffusion_xl_chatglm_256
|
7 |
from kolors.models.modeling_chatglm import ChatGLMModel
|
8 |
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
9 |
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
|
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
|
|
|
14 |
device = "cuda"
|
15 |
ckpt_dir = '/home/lixiang46/Kolors/weights/Kolors'
|
16 |
ckpt_IPA_dir = '/home/lixiang46/Kolors/weights/Kolors-IP-Adapter-Plus'
|
|
|
27 |
ip_img_size = 336
|
28 |
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
29 |
|
30 |
+
pipe_t2i = pipeline_stable_diffusion_xl_chatglm_256.StableDiffusionXLPipeline(
|
31 |
+
vae=vae,text_encoder=text_encoder,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
unet=unet,
|
34 |
+
scheduler=scheduler,
|
35 |
+
force_zeros_for_empty_prompt=False
|
36 |
+
).to(device)
|
37 |
+
|
38 |
+
pipe_i2i = pipeline_stable_diffusion_xl_chatglm_256_ipadapter.StableDiffusionXLPipeline(
|
39 |
vae=vae,
|
40 |
text_encoder=text_encoder,
|
41 |
tokenizer=tokenizer,
|
|
|
46 |
force_zeros_for_empty_prompt=False
|
47 |
).to(device)
|
48 |
|
49 |
+
if hasattr(pipe_i2i.unet, 'encoder_hid_proj'):
|
50 |
+
pipe_i2i.unet.text_encoder_hid_proj = pipe_i2i.unet.encoder_hid_proj
|
51 |
|
52 |
+
pipe_i2i.load_ip_adapter( f'{ckpt_IPA_dir}' , subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
53 |
|
54 |
MAX_SEED = np.iinfo(np.int32).max
|
55 |
MAX_IMAGE_SIZE = 2048
|
56 |
|
57 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ip_adapter_image = None, ip_adapter_scale = None):
|
|
|
58 |
if randomize_seed:
|
59 |
seed = random.randint(0, MAX_SEED)
|
|
|
60 |
generator = torch.Generator().manual_seed(seed)
|
61 |
+
|
62 |
+
if ip_adapter_image is None:
|
63 |
+
image = pipe_t2i(
|
64 |
+
prompt = prompt,
|
65 |
+
negative_prompt = negative_prompt,
|
66 |
+
guidance_scale = guidance_scale,
|
67 |
+
num_inference_steps = num_inference_steps,
|
68 |
+
width = width,
|
69 |
+
height = height,
|
70 |
+
generator = generator
|
71 |
+
).images[0]
|
72 |
+
return image
|
73 |
+
else:
|
74 |
+
pipe_i2i.set_ip_adapter_scale([ip_adapter_scale])
|
75 |
+
image = pipe_i2i(
|
76 |
+
prompt= prompt ,
|
77 |
+
ip_adapter_image=[ip_adapter_image],
|
78 |
+
negative_prompt=negative_prompt,
|
79 |
+
height=height,
|
80 |
+
width=width,
|
81 |
+
num_inference_steps=num_inference_steps,
|
82 |
+
guidance_scale=guidance_scale,
|
83 |
+
num_images_per_prompt=1,
|
84 |
+
generator=generator
|
85 |
+
).images[0]
|
86 |
+
return image
|
87 |
|
88 |
examples = [
|
89 |
+
[None, "一张瓢虫的照片,微距,变焦,高质量,电影,拿着一个牌子,写着“可图”", None],
|
90 |
["穿着黑色T恤衫,上面中文绿色大字写着“可图”", "image/test_ip.jpg", 0.5],
|
91 |
["一只可爱的小狗在奔跑", "image/test_ip2.png", 0.5]
|
92 |
]
|
|
|
189 |
|
190 |
run_button.click(
|
191 |
fn = infer,
|
192 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ip_adapter_image, ip_adapter_scale],
|
193 |
outputs = [result]
|
194 |
)
|
195 |
|
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py
ADDED
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import sys
|
15 |
+
import os
|
16 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
17 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
18 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
19 |
+
import inspect
|
20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
21 |
+
import torch
|
22 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
23 |
+
from transformers import XLMRobertaModel, ChineseCLIPTextModel
|
24 |
+
|
25 |
+
from diffusers.image_processor import VaeImageProcessor
|
26 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
27 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
28 |
+
from diffusers.models.attention_processor import (
|
29 |
+
AttnProcessor2_0,
|
30 |
+
LoRAAttnProcessor2_0,
|
31 |
+
LoRAXFormersAttnProcessor,
|
32 |
+
XFormersAttnProcessor,
|
33 |
+
)
|
34 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
35 |
+
from diffusers.utils import (
|
36 |
+
is_accelerate_available,
|
37 |
+
is_accelerate_version,
|
38 |
+
logging,
|
39 |
+
replace_example_docstring,
|
40 |
+
)
|
41 |
+
try:
|
42 |
+
from diffusers.utils import randn_tensor
|
43 |
+
except:
|
44 |
+
from diffusers.utils.torch_utils import randn_tensor
|
45 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
46 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
51 |
+
|
52 |
+
EXAMPLE_DOC_STRING = """
|
53 |
+
Examples:
|
54 |
+
```py
|
55 |
+
>>> import torch
|
56 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
57 |
+
|
58 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
59 |
+
... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
|
60 |
+
... )
|
61 |
+
>>> pipe = pipe.to("cuda")
|
62 |
+
|
63 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
64 |
+
>>> image = pipe(prompt).images[0]
|
65 |
+
```
|
66 |
+
"""
|
67 |
+
|
68 |
+
|
69 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
70 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
71 |
+
"""
|
72 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
73 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
74 |
+
"""
|
75 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
76 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
77 |
+
# rescale the results from guidance (fixes overexposure)
|
78 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
79 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
80 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
81 |
+
return noise_cfg
|
82 |
+
|
83 |
+
|
84 |
+
class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
85 |
+
r"""
|
86 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
87 |
+
|
88 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
89 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
90 |
+
|
91 |
+
In addition the pipeline inherits the following loading methods:
|
92 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
93 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
94 |
+
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
95 |
+
|
96 |
+
as well as the following saving methods:
|
97 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
98 |
+
|
99 |
+
Args:
|
100 |
+
vae ([`AutoencoderKL`]):
|
101 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
102 |
+
text_encoder ([`CLIPTextModel`]):
|
103 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
104 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
105 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
106 |
+
|
107 |
+
tokenizer (`CLIPTokenizer`):
|
108 |
+
Tokenizer of class
|
109 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
110 |
+
|
111 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
112 |
+
scheduler ([`SchedulerMixin`]):
|
113 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
114 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vae: AutoencoderKL,
|
120 |
+
text_encoder: ChatGLMModel,
|
121 |
+
tokenizer: ChatGLMTokenizer,
|
122 |
+
unet: UNet2DConditionModel,
|
123 |
+
scheduler: KarrasDiffusionSchedulers,
|
124 |
+
force_zeros_for_empty_prompt: bool = True,
|
125 |
+
):
|
126 |
+
super().__init__()
|
127 |
+
|
128 |
+
self.register_modules(
|
129 |
+
vae=vae,
|
130 |
+
text_encoder=text_encoder,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
unet=unet,
|
133 |
+
scheduler=scheduler,
|
134 |
+
)
|
135 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
136 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
137 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
138 |
+
self.default_sample_size = self.unet.config.sample_size
|
139 |
+
|
140 |
+
# self.watermark = StableDiffusionXLWatermarker()
|
141 |
+
|
142 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
143 |
+
def enable_vae_slicing(self):
|
144 |
+
r"""
|
145 |
+
Enable sliced VAE decoding.
|
146 |
+
|
147 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
148 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
149 |
+
"""
|
150 |
+
self.vae.enable_slicing()
|
151 |
+
|
152 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
153 |
+
def disable_vae_slicing(self):
|
154 |
+
r"""
|
155 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
156 |
+
computing decoding in one step.
|
157 |
+
"""
|
158 |
+
self.vae.disable_slicing()
|
159 |
+
|
160 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
161 |
+
def enable_vae_tiling(self):
|
162 |
+
r"""
|
163 |
+
Enable tiled VAE decoding.
|
164 |
+
|
165 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
|
166 |
+
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
|
167 |
+
"""
|
168 |
+
self.vae.enable_tiling()
|
169 |
+
|
170 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
171 |
+
def disable_vae_tiling(self):
|
172 |
+
r"""
|
173 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
|
174 |
+
computing decoding in one step.
|
175 |
+
"""
|
176 |
+
self.vae.disable_tiling()
|
177 |
+
|
178 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
179 |
+
r"""
|
180 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
181 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
182 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
183 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
184 |
+
`enable_model_cpu_offload`, but performance is lower.
|
185 |
+
"""
|
186 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
187 |
+
from accelerate import cpu_offload
|
188 |
+
else:
|
189 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
190 |
+
|
191 |
+
device = torch.device(f"cuda:{gpu_id}")
|
192 |
+
|
193 |
+
if self.device.type != "cpu":
|
194 |
+
self.to("cpu", silence_dtype_warnings=True)
|
195 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
196 |
+
|
197 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
198 |
+
cpu_offload(cpu_offloaded_model, device)
|
199 |
+
|
200 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
201 |
+
r"""
|
202 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
203 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
204 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
205 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
206 |
+
"""
|
207 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
208 |
+
from accelerate import cpu_offload_with_hook
|
209 |
+
else:
|
210 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
211 |
+
|
212 |
+
device = torch.device(f"cuda:{gpu_id}")
|
213 |
+
|
214 |
+
if self.device.type != "cpu":
|
215 |
+
self.to("cpu", silence_dtype_warnings=True)
|
216 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
217 |
+
|
218 |
+
model_sequence = (
|
219 |
+
[self.text_encoder]
|
220 |
+
)
|
221 |
+
model_sequence.extend([self.unet, self.vae])
|
222 |
+
|
223 |
+
hook = None
|
224 |
+
for cpu_offloaded_model in model_sequence:
|
225 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
226 |
+
|
227 |
+
# We'll offload the last model manually.
|
228 |
+
self.final_offload_hook = hook
|
229 |
+
|
230 |
+
@property
|
231 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
232 |
+
def _execution_device(self):
|
233 |
+
r"""
|
234 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
235 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
236 |
+
hooks.
|
237 |
+
"""
|
238 |
+
if not hasattr(self.unet, "_hf_hook"):
|
239 |
+
return self.device
|
240 |
+
for module in self.unet.modules():
|
241 |
+
if (
|
242 |
+
hasattr(module, "_hf_hook")
|
243 |
+
and hasattr(module._hf_hook, "execution_device")
|
244 |
+
and module._hf_hook.execution_device is not None
|
245 |
+
):
|
246 |
+
return torch.device(module._hf_hook.execution_device)
|
247 |
+
return self.device
|
248 |
+
|
249 |
+
def encode_prompt(
|
250 |
+
self,
|
251 |
+
prompt,
|
252 |
+
device: Optional[torch.device] = None,
|
253 |
+
num_images_per_prompt: int = 1,
|
254 |
+
do_classifier_free_guidance: bool = True,
|
255 |
+
negative_prompt=None,
|
256 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
257 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
258 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
259 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
260 |
+
lora_scale: Optional[float] = None,
|
261 |
+
):
|
262 |
+
r"""
|
263 |
+
Encodes the prompt into text encoder hidden states.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
prompt (`str` or `List[str]`, *optional*):
|
267 |
+
prompt to be encoded
|
268 |
+
device: (`torch.device`):
|
269 |
+
torch device
|
270 |
+
num_images_per_prompt (`int`):
|
271 |
+
number of images that should be generated per prompt
|
272 |
+
do_classifier_free_guidance (`bool`):
|
273 |
+
whether to use classifier free guidance or not
|
274 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
275 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
276 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
277 |
+
less than `1`).
|
278 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
279 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
280 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
281 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
282 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
283 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
284 |
+
argument.
|
285 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
286 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
287 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
288 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
289 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
290 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
291 |
+
input argument.
|
292 |
+
lora_scale (`float`, *optional*):
|
293 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
294 |
+
"""
|
295 |
+
# from IPython import embed; embed(); exit()
|
296 |
+
device = device or self._execution_device
|
297 |
+
|
298 |
+
# set lora scale so that monkey patched LoRA
|
299 |
+
# function of text encoder can correctly access it
|
300 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
301 |
+
self._lora_scale = lora_scale
|
302 |
+
|
303 |
+
if prompt is not None and isinstance(prompt, str):
|
304 |
+
batch_size = 1
|
305 |
+
elif prompt is not None and isinstance(prompt, list):
|
306 |
+
batch_size = len(prompt)
|
307 |
+
else:
|
308 |
+
batch_size = prompt_embeds.shape[0]
|
309 |
+
|
310 |
+
# Define tokenizers and text encoders
|
311 |
+
tokenizers = [self.tokenizer]
|
312 |
+
text_encoders = [self.text_encoder]
|
313 |
+
|
314 |
+
if prompt_embeds is None:
|
315 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
316 |
+
prompt_embeds_list = []
|
317 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
318 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
319 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
320 |
+
|
321 |
+
text_inputs = tokenizer(
|
322 |
+
prompt,
|
323 |
+
padding="max_length",
|
324 |
+
max_length=256,
|
325 |
+
truncation=True,
|
326 |
+
return_tensors="pt",
|
327 |
+
).to('cuda')
|
328 |
+
output = text_encoder(
|
329 |
+
input_ids=text_inputs['input_ids'] ,
|
330 |
+
attention_mask=text_inputs['attention_mask'],
|
331 |
+
position_ids=text_inputs['position_ids'],
|
332 |
+
output_hidden_states=True)
|
333 |
+
prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
334 |
+
pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
335 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
336 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
337 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
338 |
+
|
339 |
+
prompt_embeds_list.append(prompt_embeds)
|
340 |
+
|
341 |
+
# prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
342 |
+
prompt_embeds = prompt_embeds_list[0]
|
343 |
+
|
344 |
+
# get unconditional embeddings for classifier free guidance
|
345 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
346 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
347 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
348 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
349 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
350 |
+
# negative_prompt = negative_prompt or ""
|
351 |
+
uncond_tokens: List[str]
|
352 |
+
if negative_prompt is None:
|
353 |
+
uncond_tokens = [""] * batch_size
|
354 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
355 |
+
raise TypeError(
|
356 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
357 |
+
f" {type(prompt)}."
|
358 |
+
)
|
359 |
+
elif isinstance(negative_prompt, str):
|
360 |
+
uncond_tokens = [negative_prompt]
|
361 |
+
elif batch_size != len(negative_prompt):
|
362 |
+
raise ValueError(
|
363 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
364 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
365 |
+
" the batch size of `prompt`."
|
366 |
+
)
|
367 |
+
else:
|
368 |
+
uncond_tokens = negative_prompt
|
369 |
+
|
370 |
+
negative_prompt_embeds_list = []
|
371 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
372 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
373 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
374 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
|
375 |
+
|
376 |
+
max_length = prompt_embeds.shape[1]
|
377 |
+
uncond_input = tokenizer(
|
378 |
+
uncond_tokens,
|
379 |
+
padding="max_length",
|
380 |
+
max_length=max_length,
|
381 |
+
truncation=True,
|
382 |
+
return_tensors="pt",
|
383 |
+
).to('cuda')
|
384 |
+
output = text_encoder(
|
385 |
+
input_ids=uncond_input['input_ids'] ,
|
386 |
+
attention_mask=uncond_input['attention_mask'],
|
387 |
+
position_ids=uncond_input['position_ids'],
|
388 |
+
output_hidden_states=True)
|
389 |
+
negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
|
390 |
+
negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
|
391 |
+
|
392 |
+
if do_classifier_free_guidance:
|
393 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
394 |
+
seq_len = negative_prompt_embeds.shape[1]
|
395 |
+
|
396 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
397 |
+
|
398 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
399 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
400 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
401 |
+
)
|
402 |
+
|
403 |
+
# For classifier free guidance, we need to do two forward passes.
|
404 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
405 |
+
# to avoid doing two forward passes
|
406 |
+
|
407 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
408 |
+
|
409 |
+
# negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
410 |
+
negative_prompt_embeds = negative_prompt_embeds_list[0]
|
411 |
+
|
412 |
+
bs_embed = pooled_prompt_embeds.shape[0]
|
413 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
414 |
+
bs_embed * num_images_per_prompt, -1
|
415 |
+
)
|
416 |
+
if do_classifier_free_guidance:
|
417 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
418 |
+
bs_embed * num_images_per_prompt, -1
|
419 |
+
)
|
420 |
+
|
421 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
422 |
+
|
423 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
424 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
425 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
426 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
427 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
428 |
+
# and should be between [0, 1]
|
429 |
+
|
430 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
431 |
+
extra_step_kwargs = {}
|
432 |
+
if accepts_eta:
|
433 |
+
extra_step_kwargs["eta"] = eta
|
434 |
+
|
435 |
+
# check if the scheduler accepts generator
|
436 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
437 |
+
if accepts_generator:
|
438 |
+
extra_step_kwargs["generator"] = generator
|
439 |
+
return extra_step_kwargs
|
440 |
+
|
441 |
+
def check_inputs(
|
442 |
+
self,
|
443 |
+
prompt,
|
444 |
+
height,
|
445 |
+
width,
|
446 |
+
callback_steps,
|
447 |
+
negative_prompt=None,
|
448 |
+
prompt_embeds=None,
|
449 |
+
negative_prompt_embeds=None,
|
450 |
+
pooled_prompt_embeds=None,
|
451 |
+
negative_pooled_prompt_embeds=None,
|
452 |
+
):
|
453 |
+
if height % 8 != 0 or width % 8 != 0:
|
454 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
455 |
+
|
456 |
+
if (callback_steps is None) or (
|
457 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
458 |
+
):
|
459 |
+
raise ValueError(
|
460 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
461 |
+
f" {type(callback_steps)}."
|
462 |
+
)
|
463 |
+
|
464 |
+
if prompt is not None and prompt_embeds is not None:
|
465 |
+
raise ValueError(
|
466 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
467 |
+
" only forward one of the two."
|
468 |
+
)
|
469 |
+
elif prompt is None and prompt_embeds is None:
|
470 |
+
raise ValueError(
|
471 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
472 |
+
)
|
473 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
474 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
475 |
+
|
476 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
477 |
+
raise ValueError(
|
478 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
479 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
480 |
+
)
|
481 |
+
|
482 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
483 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
484 |
+
raise ValueError(
|
485 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
486 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
487 |
+
f" {negative_prompt_embeds.shape}."
|
488 |
+
)
|
489 |
+
|
490 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
491 |
+
raise ValueError(
|
492 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
493 |
+
)
|
494 |
+
|
495 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
496 |
+
raise ValueError(
|
497 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
498 |
+
)
|
499 |
+
|
500 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
501 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
502 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
503 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
504 |
+
raise ValueError(
|
505 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
506 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
507 |
+
)
|
508 |
+
|
509 |
+
if latents is None:
|
510 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
511 |
+
else:
|
512 |
+
latents = latents.to(device)
|
513 |
+
|
514 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
515 |
+
latents = latents * self.scheduler.init_noise_sigma
|
516 |
+
return latents
|
517 |
+
|
518 |
+
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
|
519 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
520 |
+
|
521 |
+
passed_add_embed_dim = (
|
522 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
|
523 |
+
)
|
524 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
525 |
+
|
526 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
527 |
+
raise ValueError(
|
528 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
529 |
+
)
|
530 |
+
|
531 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
532 |
+
return add_time_ids
|
533 |
+
|
534 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
535 |
+
def upcast_vae(self):
|
536 |
+
dtype = self.vae.dtype
|
537 |
+
self.vae.to(dtype=torch.float32)
|
538 |
+
use_torch_2_0_or_xformers = isinstance(
|
539 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
540 |
+
(
|
541 |
+
AttnProcessor2_0,
|
542 |
+
XFormersAttnProcessor,
|
543 |
+
LoRAXFormersAttnProcessor,
|
544 |
+
LoRAAttnProcessor2_0,
|
545 |
+
),
|
546 |
+
)
|
547 |
+
# if xformers or torch_2_0 is used attention block does not need
|
548 |
+
# to be in float32 which can save lots of memory
|
549 |
+
if use_torch_2_0_or_xformers:
|
550 |
+
self.vae.post_quant_conv.to(dtype)
|
551 |
+
self.vae.decoder.conv_in.to(dtype)
|
552 |
+
self.vae.decoder.mid_block.to(dtype)
|
553 |
+
|
554 |
+
@torch.no_grad()
|
555 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
556 |
+
def __call__(
|
557 |
+
self,
|
558 |
+
prompt: Union[str, List[str]] = None,
|
559 |
+
height: Optional[int] = None,
|
560 |
+
width: Optional[int] = None,
|
561 |
+
num_inference_steps: int = 50,
|
562 |
+
denoising_end: Optional[float] = None,
|
563 |
+
guidance_scale: float = 5.0,
|
564 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
565 |
+
num_images_per_prompt: Optional[int] = 1,
|
566 |
+
eta: float = 0.0,
|
567 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
568 |
+
latents: Optional[torch.FloatTensor] = None,
|
569 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
570 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
571 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
572 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
573 |
+
output_type: Optional[str] = "pil",
|
574 |
+
return_dict: bool = True,
|
575 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
576 |
+
callback_steps: int = 1,
|
577 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
578 |
+
guidance_rescale: float = 0.0,
|
579 |
+
original_size: Optional[Tuple[int, int]] = None,
|
580 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
581 |
+
target_size: Optional[Tuple[int, int]] = None,
|
582 |
+
use_dynamic_threshold: Optional[bool] = False,
|
583 |
+
):
|
584 |
+
r"""
|
585 |
+
Function invoked when calling the pipeline for generation.
|
586 |
+
|
587 |
+
Args:
|
588 |
+
prompt (`str` or `List[str]`, *optional*):
|
589 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
590 |
+
instead.
|
591 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
592 |
+
The height in pixels of the generated image.
|
593 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
594 |
+
The width in pixels of the generated image.
|
595 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
596 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
597 |
+
expense of slower inference.
|
598 |
+
denoising_end (`float`, *optional*):
|
599 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
600 |
+
completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
|
601 |
+
0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
|
602 |
+
Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
603 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
604 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
605 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
606 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
607 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
608 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
609 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
610 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
611 |
+
less than `1`).
|
612 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
613 |
+
The number of images to generate per prompt.
|
614 |
+
eta (`float`, *optional*, defaults to 0.0):
|
615 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
616 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
617 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
618 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
619 |
+
to make generation deterministic.
|
620 |
+
latents (`torch.FloatTensor`, *optional*):
|
621 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
622 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
623 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
624 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
625 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
626 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
627 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
628 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
629 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
630 |
+
argument.
|
631 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
632 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
633 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
634 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
635 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
636 |
+
The output format of the generate image. Choose between
|
637 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
638 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
639 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
640 |
+
callback (`Callable`, *optional*):
|
641 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
642 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
643 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
644 |
+
called at every step.
|
645 |
+
cross_attention_kwargs (`dict`, *optional*):
|
646 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
647 |
+
`self.processor` in
|
648 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
649 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
650 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
651 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
652 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
653 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
654 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
655 |
+
TODO
|
656 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
657 |
+
TODO
|
658 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
659 |
+
TODO
|
660 |
+
|
661 |
+
Examples:
|
662 |
+
|
663 |
+
Returns:
|
664 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
665 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
666 |
+
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
|
667 |
+
element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
668 |
+
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
669 |
+
"""
|
670 |
+
# 0. Default height and width to unet
|
671 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
672 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
673 |
+
|
674 |
+
original_size = original_size or (height, width)
|
675 |
+
target_size = target_size or (height, width)
|
676 |
+
|
677 |
+
# 1. Check inputs. Raise error if not correct
|
678 |
+
self.check_inputs(
|
679 |
+
prompt,
|
680 |
+
height,
|
681 |
+
width,
|
682 |
+
callback_steps,
|
683 |
+
negative_prompt,
|
684 |
+
prompt_embeds,
|
685 |
+
negative_prompt_embeds,
|
686 |
+
pooled_prompt_embeds,
|
687 |
+
negative_pooled_prompt_embeds,
|
688 |
+
)
|
689 |
+
|
690 |
+
# 2. Define call parameters
|
691 |
+
if prompt is not None and isinstance(prompt, str):
|
692 |
+
batch_size = 1
|
693 |
+
elif prompt is not None and isinstance(prompt, list):
|
694 |
+
batch_size = len(prompt)
|
695 |
+
else:
|
696 |
+
batch_size = prompt_embeds.shape[0]
|
697 |
+
|
698 |
+
device = self._execution_device
|
699 |
+
|
700 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
701 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
702 |
+
# corresponds to doing no classifier free guidance.
|
703 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
704 |
+
|
705 |
+
# 3. Encode input prompt
|
706 |
+
text_encoder_lora_scale = (
|
707 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
708 |
+
)
|
709 |
+
(
|
710 |
+
prompt_embeds,
|
711 |
+
negative_prompt_embeds,
|
712 |
+
pooled_prompt_embeds,
|
713 |
+
negative_pooled_prompt_embeds,
|
714 |
+
) = self.encode_prompt(
|
715 |
+
prompt,
|
716 |
+
device,
|
717 |
+
num_images_per_prompt,
|
718 |
+
do_classifier_free_guidance,
|
719 |
+
negative_prompt,
|
720 |
+
prompt_embeds=prompt_embeds,
|
721 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
722 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
723 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
724 |
+
lora_scale=text_encoder_lora_scale,
|
725 |
+
)
|
726 |
+
|
727 |
+
# 4. Prepare timesteps
|
728 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
729 |
+
|
730 |
+
timesteps = self.scheduler.timesteps
|
731 |
+
|
732 |
+
# 5. Prepare latent variables
|
733 |
+
num_channels_latents = self.unet.config.in_channels
|
734 |
+
latents = self.prepare_latents(
|
735 |
+
batch_size * num_images_per_prompt,
|
736 |
+
num_channels_latents,
|
737 |
+
height,
|
738 |
+
width,
|
739 |
+
prompt_embeds.dtype,
|
740 |
+
device,
|
741 |
+
generator,
|
742 |
+
latents,
|
743 |
+
)
|
744 |
+
|
745 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
746 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
747 |
+
|
748 |
+
# 7. Prepare added time ids & embeddings
|
749 |
+
add_text_embeds = pooled_prompt_embeds
|
750 |
+
add_time_ids = self._get_add_time_ids(
|
751 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
752 |
+
)
|
753 |
+
|
754 |
+
if do_classifier_free_guidance:
|
755 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
756 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
757 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
758 |
+
|
759 |
+
prompt_embeds = prompt_embeds.to(device)
|
760 |
+
add_text_embeds = add_text_embeds.to(device)
|
761 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
762 |
+
|
763 |
+
# 8. Denoising loop
|
764 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
765 |
+
|
766 |
+
# 7.1 Apply denoising_end
|
767 |
+
if denoising_end is not None:
|
768 |
+
num_inference_steps = int(round(denoising_end * num_inference_steps))
|
769 |
+
timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
|
770 |
+
|
771 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
772 |
+
for i, t in enumerate(timesteps):
|
773 |
+
# expand the latents if we are doing classifier free guidance
|
774 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
775 |
+
|
776 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
777 |
+
|
778 |
+
# predict the noise residual
|
779 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
780 |
+
noise_pred = self.unet(
|
781 |
+
latent_model_input,
|
782 |
+
t,
|
783 |
+
encoder_hidden_states=prompt_embeds,
|
784 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
785 |
+
added_cond_kwargs=added_cond_kwargs,
|
786 |
+
return_dict=False,
|
787 |
+
)[0]
|
788 |
+
|
789 |
+
# perform guidance
|
790 |
+
if do_classifier_free_guidance:
|
791 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
792 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
793 |
+
if use_dynamic_threshold:
|
794 |
+
DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
|
795 |
+
noise_pred = DynamicThresh.dynthresh(noise_pred_text,
|
796 |
+
noise_pred_uncond,
|
797 |
+
guidance_scale,
|
798 |
+
None)
|
799 |
+
|
800 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
801 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
802 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
803 |
+
|
804 |
+
# compute the previous noisy sample x_t -> x_t-1
|
805 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
806 |
+
|
807 |
+
# call the callback, if provided
|
808 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
809 |
+
progress_bar.update()
|
810 |
+
if callback is not None and i % callback_steps == 0:
|
811 |
+
callback(i, t, latents)
|
812 |
+
|
813 |
+
# make sureo the VAE is in float32 mode, as it overflows in float16
|
814 |
+
# torch.cuda.empty_cache()
|
815 |
+
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
816 |
+
self.upcast_vae()
|
817 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
818 |
+
|
819 |
+
|
820 |
+
if not output_type == "latent":
|
821 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
822 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
823 |
+
else:
|
824 |
+
image = latents
|
825 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
826 |
+
|
827 |
+
# image = self.watermark.apply_watermark(image)
|
828 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
829 |
+
|
830 |
+
# Offload last model to CPU
|
831 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
832 |
+
self.final_offload_hook.offload()
|
833 |
+
|
834 |
+
if not return_dict:
|
835 |
+
return (image,)
|
836 |
+
|
837 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
838 |
+
|
839 |
+
|
840 |
+
if __name__ == "__main__":
|
841 |
+
pass
|