Rohan Wadhawan
Add ConTextual Leaderboard
805c4c0
raw
history blame
10.2 kB
import os
import json
import csv
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from scorer import instruction_scorer
from content import format_error, format_warning, format_log, TITLE, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink
TOKEN = os.environ.get("TOKEN", None)
OWNER="ucla-contextual"
ALL_DATASET = f"{OWNER}/contextual_all"
VAL_DATASET = f"{OWNER}/contextual_val"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()
YEAR_VERSION = "2024"
def read_json_file(filepath):
with open(filepath) as infile:
data_dict = json.load(infile)
return data_dict
def save_json_file(filepath, data_dict):
with open(filepath, "w") as outfile:
json.dump(data_dict, outfile)
os.makedirs("scored", exist_ok=True)
all_data_files = {"overall": "contextual_all.csv"}
all_dataset = load_dataset(ALL_DATASET, data_files=all_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
val_data_files = {"val": "contextual_val.csv"}
val_dataset = load_dataset(VAL_DATASET, data_files=val_data_files , token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
results_data_files = {"overall": "contextual_all_results.csv", "val": "contextual_val_results.csv"}
results = load_dataset(RESULTS_DATASET, data_files=
results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
contacts_data_files = {"contacts": "contacts.csv"}
contact_infos = load_dataset(CONTACT_DATASET, data_files=contacts_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
def get_dataframe_from_results(results, split):
df = results[split].to_pandas()
df.drop(columns=['URL'], inplace=True)
df = df.sort_values(by=["All"], ascending=False)
return df
all_dataset_dataframe = all_dataset["overall"].to_pandas()
val_dataset_dataframe = val_dataset["val"].to_pandas()
contacts_dataframe = contact_infos["contacts"].to_pandas()
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
all_results_dataframe = get_dataframe_from_results(results=results, split="overall")
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "markdown", "markdown", "number", "number", "number","number", "number", "number", "number", "number", "number"]
def add_new_eval(
model: str,
method: str,
url: str,
path_to_file: str,
organisation: str,
mail: str,
):
print("printing all inputs:", model, method, url, path_to_file, organisation, mail)
if len(model)==0:
print("model none")
raise gr.Error("Please provide a model name. Field empty!")
if len(method)==0:
print("method none")
raise gr.Error("Please provide a method. Field empty!")
if len(organisation)==0:
print("org none")
raise gr.Error("Please provide organisation information. Field empty!")
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
print("email here")
raise gr.Error("Please provide a valid email address.")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set([m.lower() for m in results["val"]["Model"]]) and organisation.lower() in set([o.lower() for o in results["val"]["Organisation"]]):
print("model org combo here")
raise gr.Error("This model has been already submitted.")
if path_to_file is None:
print("file missing here")
raise gr.Error("Please attach a file.")
tmp_file_output = read_json_file(path_to_file.name)
if len(tmp_file_output.keys())!=1:
print("file format wrong here")
raise gr.Error("Submission file format incorrect. Please refer to the format description!")
tmp_output_key = list(tmp_file_output.keys())[0]
if len(tmp_file_output[tmp_output_key].keys())!=100:
print("file not 100 here")
raise gr.Error("File must contain exactly 100 predictions.")
# Save submitted file
time_atm = datetime.datetime.today()
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_raw_{time_atm}.json",
repo_type="dataset",
token=TOKEN
)
# Compute score
file_path = path_to_file.name
scores = instruction_scorer(val_dataset_dataframe, file_path , model)
path_or_fileobj=f"scored/{organisation}_{model}.json"
save_json_file(path_or_fileobj, scores)
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_or_fileobj,
path_in_repo=f"{organisation}/{model}/{YEAR_VERSION}_scored_{time_atm}.json",
repo_type="dataset",
token=TOKEN
)
# Actual submission
eval_entry = {
"Model": model,
"Method":method,
"Organisation": organisation,
"URL": url,
"All":scores["average"],
"Time":scores["time"],
"Shopping":scores["shopping"],
"Navigation":scores["navigation-transportation"],
"Abstract":scores["abstract"],
"Application Usage":scores["app"],
"Web Usage":scores["web"],
"Infographic":scores["infographics"],
"Miscellaneous Natural Scenes": scores["misc"]
}
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
val_results_dataframe = pd.concat([val_results_dataframe, pd.DataFrame([eval_entry])], ignore_index=True)
val_results_dataframe.to_csv('contextual_val_results.csv', index=False)
api.upload_file(
repo_id=RESULTS_DATASET,
path_or_fileobj="contextual_val_results.csv",
path_in_repo=f"contextual_val_results.csv",
repo_type="dataset",
token=TOKEN
)
contact_info = {
"Model": model,
"URL": url,
"Organisation": organisation,
"Mail": mail,
}
contacts_dataframe = contact_infos["contacts"].to_pandas()
contacts_dataframe = pd.concat([contacts_dataframe, pd.DataFrame([contact_info])], ignore_index=True)
contacts_dataframe.to_csv('contacts.csv', index=False)
api.upload_file(
repo_id=CONTACT_DATASET,
path_or_fileobj="contacts.csv",
path_in_repo=f"contacts.csv",
repo_type="dataset",
token=TOKEN
)
return format_log(f"Model {model} submitted by {organisation} successfully! \nPlease refresh the val leaderboard, and wait a bit to see the score displayed")
def refresh():
results_data_files = {"overall": "contextual_all_results.csv", "val": "contextual_val_results.csv"}
results = load_dataset(RESULTS_DATASET, data_files=
results_data_files, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
val_results_dataframe = get_dataframe_from_results(results=results, split="val")
all_results_dataframe = get_dataframe_from_results(results=results, split="overall")
return val_results_dataframe, all_results_dataframe
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("🧐 Introduction", open=False):
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("🎯 Submission Guidelines", open=False):
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.TextArea(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
)
with gr.Tab("Results: Test"):
leaderboard_table_all = gr.components.Dataframe(
value=all_results_dataframe, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
with gr.Tab("Results: Val"):
leaderboard_table_val = gr.components.Dataframe(
value=val_results_dataframe, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_val,
leaderboard_table_all,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name", type='text')
method_textbox = gr.Textbox(label="Method (LMM or Aug LLM or any other)", type='text')
url_textbox = gr.Textbox(label="URL to model information", type='text')
with gr.Column():
organisation = gr.Textbox(label="Organisation", type='text')
mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)", type='email')
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
method_textbox,
url_textbox,
file_output,
organisation,
mail
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)